Topological rewriting systems applied to standard bases and syntactic algebras

Cyrille Chenavier

Computer Algebra Seminar - RISC

Hagenberg, November 5, 2020

JuU
JOHANNES KEPLER UNIVERSITÄT LINZ

FШF
Der Wissenschaftsfonds.

I. Motivations

\triangleright Confluence property, polynomial reduction and Gröbner bases
\triangleright Rewriting formal power series and standard bases
II. Topological rewriting systems
\triangleright Topological confluence property
\triangleright Standard bases and topological confluence
III. Reduction operators

- Lattice structure
\triangleright Lattice characterisation of topological confluence
IV. Duality and syntactic algebras
\triangleright Syntactic algebras
\triangleright A duality criterion
V. Conclusion and perspectives

I. MOTIVATIONS

Some algorithmic
 problems in algebra

- solve decision problems (e.g., membership problem)
- compute homological invariants (e.g., Tor, Ext groups)
- analysis of functional systems (e.g., integrability conditions)

Constructive methods

in algebra

- compute set of representatives for congruence classes
- construct free resolutions of modules
- elimination theory for systems of equations

Some algorithmic
 problems in algebra

- solve decision problems (e.g., membership problem)
- compute homological invariants (e.g., Tor, Ext groups)
- analysis of functional systems (e.g., integrability conditions)

Constructive methods

in algebra

- compute set of representatives for congruence classes
- construct free resolutions of modules
- elimination theory for systems of equations

ALGEBRAIC REWRITING

Approach: orientation of relations in a structure \rightarrow notion of normal form example: chosen orientation in $\mathbb{K}[x, y] \rightarrow$ induced by $y x \rightarrow x y$

$$
\text { NF computation: } \quad 3 y x x+x y x-x y \rightarrow 4 x y x-x y \rightarrow 4 x x y-x y
$$

Remark on the case $\mathbb{K}[x, y]$: NF monomials $x^{n} y^{m}$ form a linear basis

Some algorithmic
 problems in algebra

- solve decision problems (e.g., membership problem)
- compute homological invariants (e.g., Tor, Ext groups)
- analysis of functional systems (e.g., integrability conditions)

Constructive methods

in algebra

- compute set of representatives for congruence classes
- construct free resolutions of modules
- elimination theory for systems of equations

ALGEBRAIC REWRITING

Approach: orientation of relations in a structure \rightarrow notion of normal form example: chosen orientation in $\mathbb{K}[x, y] \rightarrow$ induced by $y x \rightarrow x y$

$$
\text { NF computation: } \quad 3 y x x+x y x-x y \rightarrow 4 x y x-x y \rightarrow 4 x x y-x y
$$

Remark on the case $\mathbb{K}[x, y]$: NF monomials $x^{n} y^{m}$ form a linear basis

Some algorithmic
 problems in algebra

- solve decision problems (e.g., membership problem)
- compute homological invariants (e.g., Tor, Ext groups)
- analysis of functional systems (e.g., integrability conditions)

Constructive methods

in algebra

- compute set of representatives for congruence classes
- construct free resolutions of modules
- elimination theory for systems of equations

ALGEBRAIC REWRITING

Approach: orientation of relations in a structure \rightarrow notion of normal form example: chosen orientation in $\mathbb{K}[x, y] \rightarrow$ induced by $y x \rightarrow x y$

$$
\text { NF computation: } \quad 3 y x x+x y x-x y \rightarrow 4 x y x-x y \rightarrow 4 x x y-x y
$$

Remark on the case $\mathbb{K}[x, y]$: NF monomials $x^{n} y^{m}$ form a linear basis

Some algorithmic
 problems in algebra

- solve decision problems (e.g., membership problem)
- compute homological invariants (e.g., Tor, Ext groups)
- analysis of functional systems (e.g., integrability conditions)

Constructive methods

in algebra

- compute set of representatives for congruence classes
- construct free resolutions of modules
- elimination theory for systems of equations

ALGEBRAIC REWRITING

Approach: orientation of relations in a structure \rightarrow notion of normal form example: chosen orientation in $\mathbb{K}[x, y] \rightarrow$ induced by $y x \rightarrow x y$

$$
\text { NF computation: } \quad 3 y x x+x y x-x y \rightarrow 4 x y x-x y \rightarrow 4 x x y-x y
$$

Remark on the case $\mathbb{K}[x, y]$: NF monomials $x^{n} y^{m}$ form a linear basis

Some algorithmic
 problems in algebra

- solve decision problems (e.g., membership problem)
- compute homological invariants (e.g., Tor, Ext groups)
- analysis of functional systems (e.g., integrability conditions)

Constructive methods

in algebra

- compute set of representatives for congruence classes
- construct free resolutions of modules
- elimination theory for systems of equations

ALGEBRAIC REWRITING

Approach: orientation of relations in a structure \rightarrow notion of normal form example: chosen orientation in $\mathbb{K}[x, y] \rightarrow$ induced by $y x \rightarrow x y$

$$
\text { NF computation: } \quad 3 y x x+x y x-x y \rightarrow 4 x y x-x y \rightarrow 4 x x y-x y
$$

Remark on the case $\mathbb{K}[x, y]$: NF monomials $x^{n} y^{m}$ form a linear basis

Some algorithmic
 problems in algebra

- solve decision problems (e.g., membership problem)
- compute homological invariants (e.g., Tor, Ext groups)
- analysis of functional systems (e.g., integrability conditions)

Constructive methods

in algebra

- compute set of representatives for congruence classes
- construct free resolutions of modules
- elimination theory for systems of equations

ALGEBRAIC REWRITING

Approach: orientation of relations in a structure \rightarrow notion of normal form example: chosen orientation in $\mathbb{K}[x, y] \rightarrow$ induced by $y x \rightarrow x y$

$$
\text { NF computation: } \quad 3 y x x+x y x-x y \rightarrow 4 x y x-x y \rightarrow 4 x x y-x y
$$

Remark on the case $\mathbb{K}[x, y]$: NF monomials $x^{n} y^{m}$ form a linear basis

Some algorithmic
 problems in algebra

- solve decision problems (e.g., membership problem)
- compute homological invariants (e.g., Tor, Ext groups)
- analysis of functional systems (e.g., integrability conditions)

Constructive methods

in algebra

- compute set of representatives for congruence classes
- construct free resolutions of modules
- elimination theory for systems of equations

ALGEBRAIC REWRITING

Approach: orientation of relations in a structure \rightarrow notion of normal form example: chosen orientation in $\mathbb{K}[x, y] \rightarrow$ induced by $y x \rightarrow x y$

$$
\text { NF computation: } \quad 3 y x x+x y x-x y \rightarrow 4 x y x-x y \rightarrow 4 x x y-x y
$$

Remark on the case $\mathbb{K}[x, y]$: NF monomials $x^{n} y^{m}$ form a linear basis

Some algorithmic problems in algebra

- solve decision problems (e.g., membership problem)
- compute homological invariants (e.g., Tor, Ext groups)
- analysis of functional systems (e.g., integrability conditions)

Constructive methods

in algebra

- compute set of representatives for congruence classes
- construct free resolutions of modules
- elimination theory for systems of equations

Classical
techniques

Induces (under good hypotheses)

ALGEBRAIC REWRITING

Approach: orientation of relations in a structure \rightarrow notion of normal form example: chosen orientation in $\mathbb{K}[x, y] \rightarrow$ induced by $y x \rightarrow x y$

$$
\text { NF computation: } \quad 3 y x x+x y x-x y \rightarrow 4 x y x-x y \rightarrow 4 x x y-x y
$$

Remark on the case $\mathbb{K}[x, y]$: NF monomials $x^{n} y^{m}$ form a linear basis

Some algorithmic
 problems in algebra

- solve decision problems (e.g., membership problem)
- compute homological invariants (e.g., Tor, Ext groups)
- analysis of functional systems (e.g., integrability conditions)

Constructive methods

in algebra

- compute set of representatives for congruence classes
- construct free resolutions of modules
- elimination theory for systems of equations

Classical

techniques

Induces (under good hypotheses)

ALGEBRAIC REWRITING

Approach: orientation of relations in a structure \rightarrow notion of normal form example: chosen orientation in $\mathbb{K}[x, y] \rightarrow$ induced by $y x \rightarrow x y$

$$
\text { NF computation: } \quad 3 y x x+x y x-x y \rightarrow 4 x y x-x y \rightarrow 4 x x y-x y
$$

Remark on the case $\mathbb{K}[x, y]$: NF monomials $x^{n} y^{m}$ form a linear basis

MOTIVATING PROBLEM

Given an algebra $\mathbf{A}:=\mathbb{K}\langle X \mid R\rangle$ presented by generators X and relations R

$$
\mathbf{A}:=\mathbb{K}\langle X\rangle / I(R) \quad(\text { e.g., } \quad \mathbb{K}[x, y]=\mathbb{K}\langle x, y \mid y x-x y\rangle)
$$

Question: given an orientation of $R(e . g ., y x \rightarrow x y)$ do NF monomials form a linear basis of A?

MOTIVATING PROBLEM

Given an algebra $\mathbf{A}:=\mathbb{K}\langle X \mid R\rangle$ presented by generators X and relations R

$$
\mathbf{A}:=\mathbb{K}\langle X\rangle / I(R) \quad(\text { e.g., } \quad \mathbb{K}[x, y]=\mathbb{K}\langle x, y \mid y x-x y\rangle)
$$

Question: given an orientation of $R(e . g ., y x \rightarrow x y)$
do NF monomials form a linear basis of A?

MOTIVATING PROBLEM

Given an algebra $\mathbf{A}:=\mathbb{K}\langle X \mid R\rangle$ presented by generators X and relations R

$$
\mathbf{A}:=\mathbb{K}\langle X\rangle / I(R) \quad(e . g ., \quad \mathbb{K}[x, y]=\mathbb{K}\langle x, y \mid y x-x y\rangle)
$$

Question: given an orientation of $R(e . g ., y x \rightarrow x y)$
do NF monomials form a linear basis of A?
do NF monomials form
a generating family?
do NF monomials form
a free family?

$$
\begin{aligned}
& \text { NF monomials do not form a generating family } \\
& \mathbf{A}:=\mathbb{K}\langle x \mid x-x x\rangle \quad \text { orientation: } x \rightarrow x x \\
\rightarrow & \operatorname{dim}_{\mathbb{K}}(\mathbf{A})=2 \quad(\overline{1} \text { and } \bar{x} \text { form a basis }) \\
\rightarrow & 1 \text { is the only NF monomial } \quad\left(\forall n \geq 1: \quad x^{n} \rightarrow x^{n+1}\right)
\end{aligned}
$$

Definition: \rightarrow is called terminating if
\nexists infinite rewriting sequence
$f_{1} \rightarrow f_{2} \rightarrow \cdots \rightarrow f_{n} \rightarrow f_{n+1} \rightarrow \ldots$

$$
\begin{aligned}
& \text { NF monomials do not form a generating family } \\
& \mathbf{A}:=\mathbb{K}\langle x \mid x-x x\rangle \quad \text { orientation: } x \rightarrow x x \\
\rightarrow & \operatorname{dim}_{\mathbb{K}}(\mathbf{A})=2 \quad(\overline{1} \text { and } \bar{x} \text { form a basis }) \\
\rightarrow & 1 \text { is the only NF monomial } \quad\left(\forall n \geq 1: \quad x^{n} \rightarrow x^{n+1}\right)
\end{aligned}
$$

Definition: \rightarrow is called terminating if
\nexists infinite rewriting sequence
$f_{1} \rightarrow f_{2} \rightarrow \cdots \rightarrow f_{n} \rightarrow f_{n+1} \rightarrow \ldots$

$$
\begin{aligned}
& \text { NF monomials do not form a generating family } \\
& \mathbf{A}:=\mathbb{K}\langle x \mid x-x x\rangle \quad \text { orientation: } x \rightarrow x x \\
\rightarrow & \operatorname{dim}_{\mathbb{K}}(\mathbf{A})=2 \quad(\overline{1} \text { and } \bar{x} \text { form a basis }) \\
\rightarrow & 1 \text { is the only NF monomial } \quad\left(\forall n \geq 1: \quad x^{n} \rightarrow x^{n+1}\right)
\end{aligned}
$$

Definition: \rightarrow is called terminating if
\nexists infinite rewriting sequence

$$
f_{1} \rightarrow f_{2} \rightarrow \cdots \rightarrow f_{n} \rightarrow f_{n+1} \rightarrow \ldots
$$

Termination implies:
NF monomials are generators
Prop: let $\mathbf{A}:=\mathbb{K}\langle X \mid R\rangle$. If \rightarrow is a terminating orientation, then
\{NF monomials $\}$ is generating

$$
\begin{aligned}
& \text { NF monomials do not form a generating family } \\
& \quad \mathbf{A}:=\mathbb{K}\langle x \mid x-x x\rangle \quad \text { orientation: } x \rightarrow x x \\
& \rightarrow \\
& \operatorname{dim}_{\mathbb{K}}(\mathbf{A})=2 \quad(\overline{1} \text { and } \bar{x} \text { form a basis }) \\
& \rightarrow \\
& 1 \text { is the only NF monomial } \quad\left(\forall n \geq 1: \quad x^{n} \rightarrow x^{n+1}\right)
\end{aligned}
$$

$$
\text { "termination } \leftrightarrow \text { generating" }
$$

Definition: \rightarrow is called terminating if
\nexists infinite rewriting sequence
$f_{1} \rightarrow f_{2} \rightarrow \cdots \rightarrow f_{n} \rightarrow f_{n+1} \rightarrow \ldots$

Termination implies:
NF monomials are generators
Prop: let $\mathbf{A}:=\mathbb{K}\langle X \mid R\rangle$. If \rightarrow is a terminating orientation, then \{NF monomials $\}$ is generating

Definition: \rightarrow is called confluent if

Definition: \rightarrow is called confluent if

Definition: \rightarrow is called confluent if

Confluence implies:
NF monomials form a free family
Prop: let $\mathbf{A}:=\mathbb{K}\langle X \mid R\rangle$. If \rightarrow is a confluent orientation, then
\{NF monomials $\}$ is free

Definition: \rightarrow is called confluent if

Confluence implies:
NF monomials form a free family
Prop: let $\mathbf{A}:=\mathbb{K}\langle X \mid R\rangle$. If \rightarrow is a confluent orientation, then
\{NF monomials $\}$ is free

Monomial orders
Well-founded total orders on X^{*}, product compatible

Monomial orders

Well-founded total orders on X^{*}, product compatible

$$
\text { Induces for } \mathbf{A}:=\mathbb{K}\langle X \mid R\rangle
$$

> Natural orientation
> $\forall f=\operatorname{Ic}(f) \operatorname{lm}(f)-\operatorname{rem}(f) \in R$
> $\operatorname{lm}(f) \rightarrow_{R} 1 / \operatorname{lc}(f) \operatorname{rem}(f)$

Gröbner bases definition

R is called a G.B. of $I=I(R)$ if

$$
\operatorname{Im}(I)=\langle\operatorname{Im}(R)\rangle
$$

Monomial orders

Well-founded total orders on X^{*}, product compatible

Induces for $\mathbf{A}:=\mathbb{K}\langle X \mid R\rangle$
Natural orientation
$\forall f=\operatorname{lc}(f) \operatorname{lm}(f)-\operatorname{rem}(f) \in R$
$\operatorname{lm}(f) \rightarrow_{R} 1 / \operatorname{lc}(f) \operatorname{rem}(f)$

Gröbner bases definition R is called a G.B. of $I=I(R)$ if

$$
\operatorname{Im}(I)=\langle\operatorname{Im}(R)\rangle
$$

Theorem. Let I be a (non)commutative polynomial ideal, R be a generating set of I, and $<$ be a monomial order. Then
R is a Gröbner basis of $I \quad \Leftrightarrow \quad \rightarrow_{R}$ is a confluent orientation

Two applications of:
 "Gröbner bases \leftrightarrow confluent orientations"

Ideal membership problem: given a G.B. R of I and $f \in \mathbb{K}\langle X\rangle$, how to decide $f \in I$?
\rightarrow reduce f into normal form \widehat{f} using R and test $\widehat{f}=0$
$\rightarrow \widehat{f}$ is independent from the reduction path!

Two applications of:
 "Gröbner bases \leftrightarrow confluent orientations"

Ideal membership problem: given a G.B. R of I and $f \in \mathbb{K}\langle X\rangle$, how to decide $f \in I$?
\rightarrow reduce f into normal form \widehat{f} using R and test $\widehat{f}=0$
$\rightarrow \widehat{f}$ is independent from the reduction path!

Two applications of:
 "Gröbner bases \leftrightarrow confluent orientations"

Ideal membership problem: given a G.B. R of I and $f \in \mathbb{K}\langle X\rangle$, how to decide $f \in I$?
\rightarrow reduce f into normal form \widehat{f} using R and test $\widehat{f}=0$
$\rightarrow \widehat{f}$ is independent from the reduction path!

Two applications of:
 "Gröbner bases \leftrightarrow confluent orientations"

Ideal membership problem: given a G.B. R of I and $f \in \mathbb{K}\langle X\rangle$, how to decide $f \in I$?
\rightarrow reduce f into normal form \widehat{f} using R and test $\widehat{f}=0$
$\rightarrow \widehat{f}$ is independent from the reduction path!

PBW theorem: let \mathscr{L} be a Lie algebra and let X be a totally well-ordered basis of \mathscr{L}. Then, the universal enveloping algebra $U(\mathscr{L})$ of \mathscr{L} admits as a basis

$$
\left\{x_{1}^{\alpha_{1}} \ldots x_{k}^{\alpha_{k}} \mid x_{i}<x_{i+1} \in X, \alpha_{i} \in \mathbb{N}\right\}
$$

Two applications of:
 "Gröbner bases \leftrightarrow confluent orientations"

Ideal membership problem: given a G.B. R of I and $f \in \mathbb{K}\langle X\rangle$, how to decide $f \in I$?
\rightarrow reduce f into normal form \widehat{f} using R and test $\widehat{f}=0$
$\rightarrow \widehat{f}$ is independent from the reduction path!

PBW theorem: let \mathscr{L} be a Lie algebra and let X be a totally well-ordered basis of \mathscr{L}.
Then, the universal enveloping algebra $U(\mathscr{L})$ of \mathscr{L} admits as a basis

$$
\left\{x_{1}^{\alpha_{1}} \ldots x_{k}^{\alpha_{k}} \mid x_{i}<x_{i+1} \in X, \alpha_{i} \in \mathbb{N}\right\}
$$

Ideas of the proof:
\rightarrow presentation of $U(\mathscr{L}): \mathbb{K}\langle X \mid y x-x y-[y, x], \quad x \neq y \in X\rangle$
\rightarrow choice of terminating orientation: $y x \rightarrow x y+[y, x]$, where $x<y$
\rightarrow this orientation is confluent (equivalent to Jacobi identity)
\rightarrow a basis of $U(\mathscr{L})$ is composed of NF monomials: $x_{1}^{\alpha_{1}} \ldots x_{k}^{\alpha_{k}}$ s.t. $x_{i}<x_{i+1}$

Monomial orders for formal power series

Definition: formal power series are linear maps $S: \mathbb{K}\langle X\rangle \rightarrow \mathbb{K}$, denoted by

$$
S=\sum_{w \in X^{*}}(S, w) w
$$

Leading monomials: selected w.r.t. the opposite order of a monomial order
\rightarrow e.g., $\operatorname{Im}\left(x+x^{2}+x^{3}+\ldots\right)=x$

Monomial orders for formal power series

Definition: formal power series are linear maps $S: \mathbb{K}\langle X\rangle \rightarrow \mathbb{K}$, denoted by

$$
S=\sum_{w \in X^{*}}(S, w) w
$$

Leading monomials: selected w.r.t. the opposite order of a monomial order
\rightarrow e.g., $\operatorname{Im}\left(x+x^{2}+x^{3}+\ldots\right)=x$

Monomial orders for formal power series

Definition: formal power series are linear maps $S: \mathbb{K}\langle X\rangle \rightarrow \mathbb{K}$, denoted by

$$
S=\sum_{w \in X^{*}}(S, w) w
$$

Leading monomials: selected w.r.t. the opposite order of a monomial order
\rightarrow e.g., $\operatorname{Im}\left(x+x^{2}+x^{3}+\ldots\right)=x$

Gröbner bases

Fix a polynomial ideal I spanned by G and a monomial order
G.B. def.: $\operatorname{Im}(I)=\langle\operatorname{lm}(G)\rangle$

Rewriting characterisation:
\rightarrow_{G} is a confluent orientation

Standard bases

Fix a power series ideal $/$ spanned
by S and a monomial order
S.B. def.: $\operatorname{Im}(I)=\langle\operatorname{lm}(S)\rangle$ (w.r.t. the opposite order)

Rewriting characterisation: ?????

Monomial orders for formal power series

Definition: formal power series are linear maps $S: \mathbb{K}\langle X\rangle \rightarrow \mathbb{K}$, denoted by

$$
S=\sum_{w \in X^{*}}(S, w) w
$$

Leading monomials: selected w.r.t. the opposite order of a monomial order
\rightarrow e.g., $\operatorname{Im}\left(x+x^{2}+x^{3}+\ldots\right)=x$

Gröbner bases

Fix a polynomial ideal I spanned by G and a monomial order
G.B. def.: $\operatorname{Im}(I)=\langle\operatorname{lm}(G)\rangle$

Rewriting characterisation:
\rightarrow_{G} is a confluent orientation

Standard bases

Fix a power series ideal $/$ spanned
by S and a monomial order
S.B. def.: $\operatorname{Im}(I)=\langle\operatorname{Im}(S)\rangle$ (w.r.t. the opposite order)

Rewriting characterisation: ?????

Standard bases do not induce confluent rewriting systems
Example of standard basis: $X:=\{z<y<x\}$ and I is generated by the standard basis

$$
S:=\left\{z-x \quad z-y \quad x-x^{2} \quad y-y^{2}\right\}
$$

A non confluent diagram:

Fact: the two rewriting paths converge to 0 for the X-adic topology

Standard bases do not induce confluent rewriting systems
Example of standard basis: $X:=\{z<y<x\}$ and I is generated by the standard basis

$$
S:=\left\{z-x \quad z-y \quad x-x^{2} \quad y-y^{2}\right\}
$$

A non confluent diagram:

Fact: the two rewriting paths converge to 0 for the X-adic topology

OBJECTIVE OF THE TALK:

obtain a rewriting characterisation of standard bases using a topological adaptation of the confluence property

Standard bases do not induce confluent rewriting systems
Example of standard basis: $X:=\{z<y<x\}$ and I is generated by the standard basis

$$
S:=\left\{\begin{array}{llll}
z-x & z-y & x-x^{2} & y-y^{2}
\end{array}\right\}
$$

A non confluent diagram:

Fact: the two rewriting paths converge to 0 for the X-adic topology

II. TOPOLOGICAL REWRITING SYSTEMS

Objective: introduce a rewriting framework

that takes topology into account

Definition: a topological rewriting system (A, \rightarrow, τ) is given by a set A equipped with a binary relation \rightarrow and a topology τ

Objective: introduce a rewriting framework that takes topology into account

Definition: a topological rewriting system (A, \rightarrow, τ) is given by a set A equipped with a binary relation \rightarrow and a topology τ

$$
\begin{aligned}
& \text { Objective: introduce a rewriting framework } \\
& \text { that takes topology into account }
\end{aligned}
$$

Definition: a topological rewriting system (A, \rightarrow, τ) is given by a set A equipped with a binary relation \rightarrow and a topology τ

The set A : set of syntactic expressions (polynomials, formal power series, λ / Σ-terms, ...)

The binary relation \rightarrow : represents rewriting steps

The topology τ : used to formalize the ideas
"asymptotic rewriting and asymptotic confluence"

Asymptotic rewriting sequences

Let (A, \rightarrow, τ) be a topological rewriting system
Idea: a asymptotically rewrites into b if a rewrites arbitrarily close to b

Formally: we define \rightarrow as being the $\tau_{A}^{\text {dis }} \times \tau$-closure of \rightarrow, i.e.

$$
\mathrm{a} \rightarrow \mathrm{~b} \quad \text { iff } \quad(\forall U(\mathrm{~b}): \quad \exists . \in U(b), \quad a \stackrel{*}{\rightarrow} .)
$$

Asymptotic rewriting sequences

Let (A, \rightarrow, τ) be a topological rewriting system
Idea: a asymptotically rewrites into b if a rewrites arbitrarily close to b

Formally: we define \rightarrow as being the $\tau_{A}^{\text {dis }} \times \tau$-closure of \rightarrow, i.e.

$$
\mathbf{a} \rightarrow \mathbf{b} \quad \text { iff } \quad(\forall \mathbf{U}(\mathbf{b}): \quad \exists . \in U(b), \quad a \stackrel{*}{\rightarrow} .)
$$

Pictorially:

Topological confluence property

Let (A, \rightarrow, τ) be a topological rewriting system
Definition: \rightarrow is τ-confluent if divergent reductions asymptotically converge

Topological confluence property

Let (A, \rightarrow, τ) be a topological rewriting system
Definition: \rightarrow is τ-confluent if divergent reductions asymptotically converge

Alternatively: for every neighbourhood of \bullet, there are rewriting sequences s.t.

Link with abstract rewriting theory

Abstract rewriting systems: (A, \rightarrow, τ), where $\tau:=\tau_{A}^{\text {dis }}$ is the discrete topology
\rightarrow asymptotic rewriting brings nothing new, e.g. τ-confluence \Leftrightarrow confluence

Algebraic examples: word/polynomial/operadic/... rewriting

X-adic topology
 on formal power series

Distance between FPSs: the distance between $S, S^{\prime} \in \mathbb{K}\langle\langle X\rangle\rangle$ is defined by

$$
\begin{aligned}
& \left.d\left(S, S^{\prime}\right):=\frac{1}{2^{v\left(S-S^{\prime}\right)}}, \quad \text { where } \quad v(S):=\min (\operatorname{deg}(w) \mid \quad(S, w) \neq 0)\right) \\
& \rightarrow \text { "close series coincide until high degrees" }
\end{aligned}
$$

Definition: the X-adic topology is the topology τ_{X} on $\mathbb{K}\langle\langle X\rangle\rangle$ induced by d

X-adic topology
 on formal power series

Distance between FPSs: the distance between $S, S^{\prime} \in \mathbb{K}\langle\langle X\rangle\rangle$ is defined by

$$
\begin{aligned}
& \left.d\left(S, S^{\prime}\right):=\frac{1}{2^{v\left(S-S^{\prime}\right)}}, \quad \text { where } \quad v(S):=\min (\operatorname{deg}(w) \mid \quad(S, w) \neq 0)\right) \\
& \rightarrow \text { "close series coincide until high degrees" }
\end{aligned}
$$

Definition: the X-adic topology is the topology τ_{X} on $\mathbb{K}\langle\langle X\rangle\rangle$ induced by d

X-adic topology
 on formal power series

Distance between FPSs: the distance between $S, S^{\prime} \in \mathbb{K}\langle\langle X\rangle\rangle$ is defined by

$$
\begin{aligned}
& \left.d\left(S, S^{\prime}\right):=\frac{1}{2^{v\left(S-S^{\prime}\right)}}, \quad \text { where } \quad v(S):=\min (\operatorname{deg}(w) \mid \quad(S, w) \neq 0)\right) \\
& \rightarrow \text { "close series coincide until high degrees" }
\end{aligned}
$$

Definition: the X-adic topology is the topology τ_{X} on $\mathbb{K}\langle\langle X\rangle\rangle$ induced by d

Theorem [C. 2020]

Let I be a formal power series ideal, S be a subset of I, and $<$ be a monomial order. We have the following equivalence:
S is a standard basis of $I \Leftrightarrow S$ is a generating set of I and \rightarrow_{s} is τ_{X}-confluent

Illustration of the theorem

Example: consider $X:=\{z<y<x\}$ and I is generated by the standard basis

$$
S:=\left\{\begin{array}{llll}
z-x & z-y & x-x^{2} & y-y^{2}
\end{array}\right\}
$$

Rewriting diagram: we have the following τ_{X}-confluent diagram

Argument: the sequences $\left(x^{n}\right)_{n},\left(y^{n}\right)_{n} \subseteq \mathbb{K}\langle\langle X\rangle\rangle$ both converge to $\mathbf{0}$ since

$$
d\left(\mathbf{0}, x^{n}\right)=d\left(\mathbf{0}, y^{n}\right)=\frac{1}{2^{n}}
$$

Some remarks

Theorem on standard bases: proven using a criterion of [Becker, 1990]
\rightarrow criterion based on S-series (analogous to S-polynomials)

Alternative τ-confluence: diagram representation

\rightarrow appears in rewriting on infinitary λ / \sum-terms

III. REDUCTION OPERATORS

Functional representation of (discrete) rewriting systems

Example: $y y \rightarrow y x \quad \rightsquigarrow \quad$ left/right reduction operators on 3 letter words

Properties of L and R : they are linear projectors of $\mathbb{K} X^{(3)}$ (or $\mathbb{K}\langle X\rangle$) and compatible with the deglex order induced by $x<y$

Functional representation of (discrete) rewriting systems

Example: $y y \rightarrow y x \quad \rightsquigarrow \quad$ left/right reduction operators on 3 letter words

Properties of L and R : they are linear projectors of $\mathbb{K} X^{(3)}$ (or $\mathbb{K}\langle X\rangle$) and compatible with the deglex order induced by $x<y$

Functional representation of (discrete) rewriting systems

Example: $y y \rightarrow y x \quad \rightsquigarrow \quad$ left/right reduction operators on 3 letter words

Properties of L and R : they are linear projectors of $\mathbb{K} X^{(3)}$ (or $\mathbb{K}\langle X\rangle$) and compatible with the deglex order induced by $x<y$

Definition: a reduction operator on a vector space V equipped with a well-ordered basis $(G,<)$ is a linear projector of V s.t.

$$
\forall g \in G: \quad T(g)=g \quad \text { or } \quad \operatorname{Im}(T(g))<g
$$

Lattice structure

Proposition: the set of reduction operators admits lattice operations s.t.
$T_{1} \wedge T_{2}$ computes minimal normal forms

Example: $\mathrm{L} \wedge \mathrm{R}$ maps 3-letter words starting with y to $y x x$

Lattice structure

Proposition: the set of reduction operators admits lattice operations s.t. $T_{1} \wedge T_{2}$ computes minimal normal forms

Example: $\mathrm{L} \wedge \mathrm{R}$ maps 3-letter words starting with y to $y x x$

Lattice structure

Proposition: the set of reduction operators admits lattice operations s.t.
$T_{1} \wedge T_{2}$ computes minimal normal forms

Example: $\mathrm{L} \wedge \mathrm{R}$ maps 3-letter words starting with y to $y x x$

Functional characterisation of confluence (C. 2018):
the rewriting relation induced by T_{1} and T_{2} is confluent iff

$$
\operatorname{im}\left(T_{1}\right) \cap \operatorname{im}\left(T_{2}\right)=\operatorname{im}\left(T_{1} \wedge T_{2}\right)
$$

Lattice structure

Proposition: the set of reduction operators admits lattice operations s.t.
$T_{1} \wedge T_{2}$ computes minimal normal forms

Example: $\mathbf{L} \wedge \mathbf{R}$ maps 3-letter words starting with y to $y x x$

$$
\begin{aligned}
& \text { Illustration of the criterion: } \\
& \rightarrow y x y \in \operatorname{im}(\mathrm{~L}) \cap \operatorname{im}(\mathrm{R}) \\
& \rightarrow y x y \notin \operatorname{im}(\mathrm{~L} \wedge \mathrm{R})
\end{aligned}
$$

Functional characterisation of confluence (C. 2018):
the rewriting relation induced by T_{1} and T_{2} is confluent iff

$$
\operatorname{im}\left(T_{1}\right) \cap \operatorname{im}\left(T_{2}\right)=\operatorname{im}\left(T_{1} \wedge T_{2}\right)
$$

Objective: extend the functional approach to topological vector spaces

Compatibility with the topology
\rightarrow continuous ROs

Locally well-ordered total bases

Fix a metric vector space (V, d) together with a subset $G \subset V$ s.t.
Totality: G is a free family that generates a dense subspace of V

Locally well-ordered: G is equipped with a total order $<$ and admits a strictly positive graduation $G=\coprod G^{(n)}$ s.t.
$\rightarrow \forall g \in G^{(n)}: \quad 1 / n \leq d(g, 0)<1 /(n-1)$
$\rightarrow<$ restricts to well-orders on $G^{(n)}$'s

Locally well-ordered total bases

Fix a metric vector space (V, d) together with a subset $G \subset V$ s.t.
Totality: G is a free family that generates a dense subspace of V

Locally well-ordered: G is equipped with a total order $<$ and admits a strictly positive graduation $G=\coprod G^{(n)}$ s.t.
$\rightarrow \forall g \in G^{(n)}: \quad 1 / n \leq d(g, 0)<1 /(n-1)$
$\rightarrow<$ restricts to well-orders on $G^{(n)}$'s

Definition: a reduction operator is a continuous linear projector of V s.t.

$$
\forall g \in G: \quad T(g)=g \quad \text { or } \quad \operatorname{Im}(T(g))<g
$$

EXAMPLES OF LOCAL WELL-ORDERED TOTAL BASES

Discrete vector spaces

Metric: $\forall v \neq v^{\prime}: \quad d\left(v, v^{\prime}\right)=1$
$\rightarrow G=G^{(1)}$ is a basis equipped with a total well-order

Remark: we recover the previous definition of reduction operator

Formal power series

Underlying space: $V=\mathbb{K}\langle\langle X\rangle\rangle$
Metric: X-adic metric
$\rightarrow G=X^{*}$ is equipped with an opposite monomial order
$\rightarrow G^{\left(2^{n}\right)}=\{$ degree- n monomials $\}$

Proposition: the kernel map induces a bijection between reduction operators on V and closed subspaces of V
ker: $\{$ reduction operators on $V\} \xrightarrow{\sim}\{$ closed subspaces of $V\}$
In particular, reduction operators admit the following lattice operations
$\rightarrow T_{1} \preceq T_{2} \quad$ iff $\quad \operatorname{ker}\left(T_{2}\right) \subseteq \operatorname{ker}\left(T_{1}\right)$
$\rightarrow T_{1} \wedge T_{2}$ is the reduction operator with kernel $\overline{\operatorname{ker}\left(T_{1}\right)+\operatorname{ker}\left(T_{2}\right)}$
$\rightarrow T_{1} \vee T_{2}$ is the reduction operator with kernel $\operatorname{ker}\left(T_{1}\right) \cap \operatorname{ker}\left(T_{2}\right)$

Theorem [C. 2020]

Let (V, d) be a metric vector space and let F be a set of reduction operators over V. We have the following equivalence:

$$
\rightarrow_{F} \quad \text { is topologically confluent } \quad \Leftrightarrow \quad \operatorname{im}(\wedge F) \quad=\quad \bigcap_{T \in F} \operatorname{im}(T)
$$

IV. DUALITY AND SYNTACTIC ALGEBRAS

The functional approach brings DUALITY
$\{$ reduction operators on $V\} \rightarrow\left\{\right.$ reduction operators on $\left.V^{*}\right\}$
$T \quad \mapsto \quad T^{!} \quad:=\quad \operatorname{id}_{V^{*}}-T^{*}$
$\rightarrow \forall \varphi \in V^{*}: \quad T^{!}(\varphi)=\varphi-\varphi \circ T \in V^{*}$

The functional approach brings DUALITY

$$
\begin{aligned}
&\{\text { reduction operators on } V\} \rightarrow\left\{\text { reduction operators on } V^{*}\right\} \\
& T \quad \mapsto \quad T^{!}:=\operatorname{id}_{V^{*}}-T^{*} \\
& \rightarrow \forall \varphi \in V^{*}: \quad T^{!}(\varphi)=\varphi-\varphi \circ T \in V^{*}
\end{aligned}
$$

Some properties of the dual

Total basis of V^{*} : dual to the total basis of V (under some hypotheses)
$\rightarrow T^{*}$ is not a RO since $\quad\left(\forall g \in G: \quad T^{*}\left(g^{*}\right)=g^{*}+(\right.$ other terms $\left.)\right)$
Dual equations: $\operatorname{im}\left(T^{!}\right)=\operatorname{im}(T)^{\perp} \quad \operatorname{ker}\left(T^{!}\right)=\operatorname{ker}(T)^{\perp}$

Duality and formal power series

Remark: from $\mathbb{K}\langle\langle X\rangle\rangle=(\mathbb{K}\langle X\rangle)^{*}$, there is a duality
$\{$ reduction operators on $\mathbb{K}\langle X\rangle\} \rightarrow\{$ reduction operators on $\mathbb{K}\langle\langle X\rangle\rangle\}$

Application: duality criterion for an algebra to be syntactic (next slides)

Definition: the syntactic algebra of $S \in \mathbb{K}\langle\langle X\rangle\rangle$ is

$$
\mathbf{A}_{s}:=\mathbb{K}\langle X\rangle / I_{S}
$$

where I_{s} be the greatest ideal included in $\operatorname{ker}(S)$

Definition: the syntactic algebra of $S \in \mathbb{K}\langle\langle X\rangle\rangle$ is

$$
\mathbf{A}_{S}:=\mathbb{K}\langle X\rangle / I_{S}
$$

where I_{s} be the greatest ideal included in $\operatorname{ker}(S)$

Syntactic algebras and series representations
Definition: a representation of S is a triple $\left(\mathbf{A}, u: \mathbb{K}\langle X\rangle \rightarrow \mathbf{A}, \varphi \in \mathbf{A}^{*}\right)$ s.t.

Fact: $\left(\mathbf{A}_{S}, \pi: \mathbb{K}\langle X\rangle \rightarrow \mathbf{A}_{S}, \bar{S}:=S \bmod I_{S}\right)$ is the minimal representation of S
\rightarrow extension of Kleene's theorem: S is rational iff $\operatorname{dim}\left(\mathbf{A}_{S}\right)<\infty$ [Reutenaueur]

Definition: the syntactic algebra of $S \in \mathbb{K}\langle\langle X\rangle\rangle$ is

$$
\mathbf{A}_{s}:=\mathbb{K}\langle X\rangle / I_{S}
$$

where I_{s} be the greatest ideal included in $\operatorname{ker}(S)$

Syntactic algebras and series representations
Definition: a representation of S is a triple $\left(\mathbf{A}, u: \mathbb{K}\langle X\rangle \rightarrow \mathbf{A}, \varphi \in \mathbf{A}^{*}\right)$ s.t.

Fact: $\left(\mathbf{A}_{S}, \pi: \mathbb{K}\langle X\rangle \rightarrow \mathbf{A}_{S}, \bar{S}:=S \bmod I_{S}\right)$ is the minimal representation of S
\rightarrow extension of Kleene's theorem: S is rational iff $\operatorname{dim}\left(\mathbf{A}_{S}\right)<\infty$ [Reutenaueur]

Definition: the syntactic algebra of $S \in \mathbb{K}\langle\langle X\rangle\rangle$ is

$$
\mathbf{A}_{S}:=\mathbb{K}\langle X\rangle / I_{S}
$$

where I_{s} be the greatest ideal included in $\operatorname{ker}(S)$

Syntactic algebras and series representations
Definition: a representation of S is a triple $\left(\mathbf{A}, u: \mathbb{K}\langle X\rangle \rightarrow \mathbf{A}, \varphi \in \mathbf{A}^{*}\right) \quad$ s.t.

Fact: $\left(\mathbf{A}_{S}, \pi: \mathbb{K}\langle X\rangle \rightarrow \mathbf{A}_{S}, \bar{S}:=S \bmod I_{S}\right)$ is the minimal representation of S
\rightarrow extension of Kleene's theorem: S is rational iff $\operatorname{dim}\left(\mathbf{A}_{S}\right)<\infty$ [Reutenaueur]

Preliminaries

$\mathbb{R O}$ of an algebra: given a monomial order, $\mathbf{A}:=\mathbb{K}\langle X\rangle / I$ is associated with

$$
T_{\mathrm{A}}:=\operatorname{ker}^{-1}(I): \quad \text { reduction operator on } \mathbb{K}\langle X\rangle
$$

Notation: given a reduction operator T, let $\widehat{\mathbb{K} \operatorname{im}(T)} \subseteq \mathbb{K}\langle\langle X\rangle\rangle$ defined by

$$
S \in \widehat{\mathbb{K} \operatorname{im}(T)} \quad \text { iff } \quad\langle S \mid w\rangle \neq 0 \quad \Rightarrow \quad w \in \operatorname{im}(T)
$$

Theorem [C. 2020]

Let $\mathbf{A}:=\mathbb{K}\langle X\rangle / I$ be an algebra. Then, \mathbf{A} is syntactic iff
\exists a nonzero $S \in \mathbb{K} \widehat{\operatorname{mim}\left(T_{\mathbf{A}}\right)} \quad$ s.t. $\quad I$ is the greatest ideal included in $I \oplus \operatorname{ker}(S)$
Moreover, in this case \mathbf{A} is the syntactic algebra of $T^{*}(S) \in \mathbb{K}\langle\langle X\rangle\rangle$.

V. CONCLUSION AND PERSPECTIVES

Conclusion and perspectives

Summary of presented notions and results:

\triangleright we introduced the topological confluence property and a rewriting characterisation of standard bases
\triangleright we characterised topological confluence through lattice operations
\triangleright we formulated a duality criterion for an algebra to be syntactic

Further works:

\triangleright study abstract properties of topological rewriting systems (e.g., C-R property, Newman's Lemma, etc ...)
\triangleright develop a geometrical framework for rewriting theory
\triangleright applications of noncommutative power series to the problem of the minimal realisation

Conclusion and perspectives

Summary of presented notions and results:

\triangleright we introduced the topological confluence property and a rewriting characterisation of standard bases
\triangleright we characterised topological confluence through lattice operations
\triangleright we formulated a duality criterion for an algebra to be syntactic

Further works:

\triangleright study abstract properties of topological rewriting systems (e.g., C-R property, Newman's Lemma, etc ...)
\triangleright develop a geometrical framework for rewriting theory
\triangleright applications of noncommutative power series to the problem of the minimal realisation

