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Motivations Algebraic structures presented by oriented relations

Some algorithmic
problems in algebra

• solve decision problems
(e.g., membership problem)

• compute homological invariants
(e.g., Tor, Ext groups)

• analysis of functional systems
(e.g., integrability conditions)

Constructive methods
in algebra

• compute set of representatives
for congruence classes

• construct free resolutions of
modules

• elimination theory for systems
of equations

ALGEBRAIC REWRITING

Approach: orientation of relations in a structure Ô notion of normal form

example: chosen orientation in K[x , y ] Ô induced by yx → xy

NF computation: 3 yxx + xyx − xy → 4 xyx− xy → 4 xxy− xy

Remark on the case K[x , y ] : NF monomials xnym form a linear basis

Classical

techniques

Induces (under good hypotheses)
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Motivations Normal forms and linear bases of algebras

MOTIVATING PROBLEM

Given an algebra A := K〈X | R〉 presented by generators X and relations R

A := K〈X〉/I(R)
(

e.g ., K[x , y ] = K〈x , y | yx − xy〉
)

Question: given an orientation of R (e.g., yx → xy)

do NF monomials form a linear basis of A?

Equivalently

do NF monomials form
a generating family?

do NF monomials form
a free family?
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Motivations Termination

NF monomials do not form a generating family

A := K〈x | x − xx〉 orientation: x → xx

Ô dimK(A) = 2
(
1 and x form a basis

)
Ô 1 is the only NF monomial

(
∀n ≥ 1 : xn → xn+1

)

"termination ↔ generating"

Definition: → is called terminating
if

@ infinite rewriting sequence

f1 → f2 → · · · → fn → fn+1 → . . .

Termination implies:
NF monomials are generators

Prop: let A := K〈X | R〉. If → is a
terminating orientation, then
{NF monomials} is generating
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Motivations Confluence

NF monomials are not free

A := K〈x , y | yy − yx〉 orientation: yy → yx
yyy

yxy yyx

yxx

=⇒


yxy = yxx

yxy , yxx are 6=
NF monomials

"confluence ↔ freeness"

Definition: → is called confluent if
.

f •

.

Confluence implies:
NF monomials form a free family

Prop: let A := K〈X | R〉. If → is a
confluent orientation, then

{NF monomials} is free
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Motivations Gröbner bases and confluent orientations

Monomial orders
Well-founded total orders on X∗, product compatible

Induces for A := K〈X | R〉

Natural orientation

∀f = lc(f ) lm(f ) − rem(f ) ∈ R

lm(f )→R 1/ lc(f ) rem(f )

Gröbner bases definition

R is called a G.B. of I = I(R) if

lm(I) = 〈lm(R)〉

Theorem. Let I be a (non)commutative polynomial ideal, R be a generating

set of I, and < be a monomial order. Then

R is a Gröbner basis of I ⇔ →R is a confluent orientation

8 / 34
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Motivations Gröbner bases and confluent orientations

Relationship

Monomial orders
Well-founded total orders on X∗, product compatible

Induces for A := K〈X | R〉
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Motivations Ideal membership and PBW theorem

Two applications of:
"Gröbner bases ↔ confluent orientations"

Ideal membership problem: given a G.B. R of I and f ∈ K〈X〉, how to decide f ∈ I?

Ô reduce f into normal form f̂ using R and test f̂ = 0

Ô f̂ is independent from the reduction path!

PBW theorem: let L be a Lie algebra and let X be a totally well-ordered basis of L .

Then, the universal enveloping algebra U (L ) of L admits as a basis{
xα1
1 . . . xαk

k | xi < xi+1 ∈ X , αi ∈ N
}

Ideas of the proof:

Ô presentation of U (L ): K〈X | yx − xy − [y , x ], x 6= y ∈ X〉

Ô choice of terminating orientation: yx → xy + [y , x ], where x < y

Ô this orientation is confluent (equivalent to Jacobi identity)

Ô a basis of U (L ) is composed of NF monomials: xα1
1 . . . xαk

k s.t. xi < xi+1
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Motivations Standard bases of and rewriting formal power

Monomial orders for formal power series

Definition: formal power series are linear maps S : K〈X〉 → K, denoted by

S =
∑

w∈X∗
(S,w)w

Leading monomials: selected w.r.t. the opposite order of a monomial order

Ô e.g., lm
(

x + x2 + x3 + . . .
)

= x

Gröbner bases

Fix a polynomial ideal I spanned
by G and a monomial order

G.B. def.: lm(I) = 〈lm(G)〉

Rewriting characterisation:
→G is a confluent orientation

Standard bases

Fix a power series ideal I spanned
by S and a monomial order

S.B. def.: lm(I) = 〈lm(S)〉
(w.r.t. the opposite order)

Rewriting characterisation: ?????
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Motivations Standard bases and topology of formal power series

Standard bases do not induce confluent rewriting systems

Example of standard basis: X := {z < y < x} and I is generated by the standard basis

S :=
{
z-x z-y x-x2 y-y2

}
A non confluent diagram:

x x2 . . . xn . . .

z

y y2 . . . yn . . .

Fact: the two rewriting paths converge to 0 for the X -adic topology

OBJECTIVE OF THE TALK:

obtain a rewriting characterisation of standard bases

using a topological adaptation of the confluence property

11 / 34
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II. TOPOLOGICAL REWRITING SYSTEMS
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Topological rewriting systems Definition of topological rewriting systems

Objective: introduce a rewriting framework

that takes topology into account

Definition: a topological rewriting system (A,→, τ) is given by

a set A equipped with a binary relation → and a topology τ

The set A: set of syntactic expressions

(polynomials, formal power series, λ/Σ-terms, . . . )

The binary relation →: represents rewriting steps

The topology τ : used to formalize the ideas

"asymptotic rewriting and asymptotic confluence"

UNDERLYING IDEAS
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Topological rewriting systems Topological closure of rewriting sequences

Asymptotic rewriting sequences

Let (A,→, τ) be a topological rewriting system

Idea: a asymptotically rewrites into b if a rewrites arbitrarily close to b

Formally: we define � as being the τ disA × τ -closure of →, i.e.

a � b iff
(
∀ U(b) : ∃. ∈ U(b), a ∗→ .

)

Pictorially:

b

a
*
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Topological rewriting systems Topological confluence property

Topological confluence property

Let (A,→, τ) be a topological rewriting system

Definition: → is τ -confluent if divergent reductions asymptotically converge

.

. •

.

∗

∗

Alternatively: for every neighbourhood of •, there are rewriting sequences s.t.

.. .

•

* *

* *
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Topological rewriting systems Confluence for the discrete topology

Link with

abstract rewriting theory

Abstract rewriting systems: (A,→, τ), where τ := τ disA is the discrete topology

Ô asymptotic rewriting brings nothing new, e.g. τ -confluence ⇔ confluence

.. .

•

* *

* *

.. .

•

* *

* *

Small opens

are singletons

Algebraic examples: word/polynomial/operadic/. . . rewriting
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Topological rewriting systems Rewriting characterisation of standard bases

X -adic topology

on formal power series

Distance between FPSs: the distance between S, S ′ ∈ K〈〈X〉〉 is defined by

d(S,S ′) := 1
2v(S−S′) , where v(S) := min

(
deg(w) | (S,w) 6= 0)

)
Ô "close series coincide until high degrees"

Definition: the X -adic topology is the topology τX on K〈〈X〉〉 induced by d

Theorem [C. 2020]

Let I be a formal power series ideal, S be a subset of I, and < be a monomial order.

We have the following equivalence:

S is a standard basis of I ⇔ S is a generating set of I and →S is τX -confluent
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Topological rewriting systems Rewriting characterisation of standard bases

Illustration of the theorem

Example: consider X := {z < y < x} and I is generated by the standard basis

S :=
{
z-x z-y x-x2 y-y2

}
Rewriting diagram: we have the following τX -confluent diagram

x x2 . . . xn . . .

z 0

y y 2 . . . yn . . .

Argument: the sequences (xn)n, (yn)n ⊆ K〈〈X〉〉 both converge to 0 since

d(0, xn) = d(0, yn) = 1
2n
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Topological rewriting systems Other approaches to topological rewriting

Some remarks

Theorem on standard bases: proven using a criterion of [Becker, 1990]

Ô criterion based on S-series (analogous to S-polynomials)

Alternative τ -confluence: diagram representation

.

. •

.

Ô appears in rewriting on infinitary λ/Σ-terms
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III. REDUCTION OPERATORS
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Reduction operators Reduction operators for discrete rewriting systems

Functional representation of (discrete) rewriting systems

Example: yy → yx  left/right reduction operators on 3 letter words

yyy

yxy yyx

yxx

L R

L

Properties of L and R: they are linear projectors of KX (3) (or K〈X〉) and

compatible with the deglex order induced by x < y

Definition: a reduction operator on a vector space V equipped with

a well-ordered basis (G , <) is a linear projector of V s.t.

∀g ∈ G : T (g) = g or lm(T (g)) < g
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Reduction operators Lattice structure on discrete reduction operators

Lattice structure

Proposition: the set of reduction operators admits lattice operations s.t.

T1 ∧ T2 computes minimal normal forms

Example: L ∧ R maps 3-letter words starting with y to yxx

yyy

yxy yyx

yxx

L R

L

Illustration of the criterion:

Ô yxy ∈ im(L) ∩ im(R)

Ô yxy /∈ im
(
L ∧ R

)

Functional characterisation of confluence (C. 2018):

the rewriting relation induced by T1 and T2 is confluent iff

im(T1) ∩ im(T2) = im(T1 ∧ T2)
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Reduction operators Reduction operators for topological rewriting systems

Objective: extend the functional approach
to topological vector spaces

Extend the
previous definition

Ô discrete topology

Compatibility
with the topology

Ô continuous ROs

Motivating
algebraic example

Ô formal power series

REQUIREMENTS
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Reduction operators Reduction operators for topological rewriting systems

Locally well-ordered total bases

Fix a metric vector space (V , d) together with a subset G ⊂ V s.t.

Totality: G is a free family that generates a dense subspace of V

Locally well-ordered: G is equipped with a total order < and

admits a strictly positive graduation G =
∐

G (n) s.t.

Ô ∀g ∈ G (n) : 1/n ≤ d(g , 0) < 1/(n − 1)

Ô < restricts to well-orders on G (n)’s

Definition: a reduction operator is a continuous linear projector of V s.t.

∀g ∈ G : T (g) = g or lm(T (g)) < g
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Reduction operators Cases of discrete topology and formal power series

EXAMPLES OF LOCAL

WELL-ORDERED TOTAL BASES

Discrete vector spaces

Metric: ∀v 6= v ′ : d(v , v ′) = 1

Ô G = G(1) is a basis equipped

with a total well-order

Remark: we recover the previous

definition of reduction operator

Formal power series

Underlying space: V = K〈〈X〉〉

Metric: X -adic metric

Ô G = X∗ is equipped with
an opposite monomial order

Ô G(2n) = {degree-n monomials}
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Reduction operators Lattice structure on topological reduction operators

Proposition: the kernel map induces a bijection between reduction operators on V

and closed subspaces of V

ker :
{
reduction operators on V

}
∼−→

{
closed subspaces of V

}
In particular, reduction operators admit the following lattice operations

Ô T1 � T2 iff ker(T2) ⊆ ker(T1)

Ô T1 ∧ T2 is the reduction operator with kernel ker(T1) + ker(T2)

Ô T1 ∨ T2 is the reduction operator with kernel ker(T1) ∩ ker(T2)
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Reduction operators Lattice characterisation of topological confluence

Theorem [C. 2020]

Let (V , d) be a metric vector space and let F be a set of reduction operators over V .

We have the following equivalence:

→F is topologically confluent ⇔ im (∧F ) =
⋂

T∈F

im(T )
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IV. DUALITY AND SYNTACTIC ALGEBRAS
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Duality and syntactic algebras Dual reduction operator

The functional approach brings DUALITY

{
reduction operators on V

}
→

{
reduction operators on V ∗

}
T 7→ T ! := idV∗ −T ∗

Ô ∀ϕ ∈ V ∗ : T !(ϕ) = ϕ− ϕ ◦ T ∈ V ∗

Some properties of the dual

Total basis of V ∗: dual to the total basis of V (under some hypotheses)

Ô T∗ is not a RO since
(
∀g ∈ G : T∗(g∗) = g∗+ (other terms)

)
Dual equations: im(T !) = im(T )⊥ ker(T !) = ker(T )⊥
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Duality and syntactic algebras Duality polynomials - formal power series

Duality and formal power series

Remark: from K〈〈X〉〉 = (K〈X〉)∗, there is a duality{
reduction operators on K〈X〉

}
→

{
reduction operators on K〈〈X〉〉

}
Application: duality criterion for an algebra to be syntactic (next slides)
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Duality and syntactic algebras Syntactic algebras

Definition: the syntactic algebra of S ∈ K〈〈X〉〉 is

AS := K〈X〉/IS

where IS be the greatest ideal included in ker(S)

Syntactic algebras and series representations

Definition: a representation of S is a triple
(
A, u : K〈X〉 → A, ϕ ∈ A∗

)
s.t.

A

K〈X〉 K

AS

S
u ϕ

∃!

Fact:
(
AS , π : K〈X〉 → AS , S := S mod IS

)
is the minimal representation of S

Ô extension of Kleene’s theorem: S is rational iff dim
(
AS
)
<∞ [Reutenaueur]

31 / 34



Duality and syntactic algebras Syntactic algebras

Definition: the syntactic algebra of S ∈ K〈〈X〉〉 is

AS := K〈X〉/IS

where IS be the greatest ideal included in ker(S)

Syntactic algebras and series representations

Definition: a representation of S is a triple
(
A, u : K〈X〉 → A, ϕ ∈ A∗

)
s.t.

A

K〈X〉 K

AS

S
u ϕ

∃!

Fact:
(
AS , π : K〈X〉 → AS , S := S mod IS

)
is the minimal representation of S

Ô extension of Kleene’s theorem: S is rational iff dim
(
AS
)
<∞ [Reutenaueur]

31 / 34



Duality and syntactic algebras Syntactic algebras

Definition: the syntactic algebra of S ∈ K〈〈X〉〉 is

AS := K〈X〉/IS

where IS be the greatest ideal included in ker(S)

Syntactic algebras and series representations

Definition: a representation of S is a triple
(
A, u : K〈X〉 → A, ϕ ∈ A∗

)
s.t.

A

K〈X〉 K

AS

S
u ϕ

π S

∃!

Fact:
(
AS , π : K〈X〉 → AS , S := S mod IS

)
is the minimal representation of S

Ô extension of Kleene’s theorem: S is rational iff dim
(
AS
)
<∞ [Reutenaueur]

31 / 34



Duality and syntactic algebras Syntactic algebras

Definition: the syntactic algebra of S ∈ K〈〈X〉〉 is

AS := K〈X〉/IS

where IS be the greatest ideal included in ker(S)

Syntactic algebras and series representations

Definition: a representation of S is a triple
(
A, u : K〈X〉 → A, ϕ ∈ A∗

)
s.t.

A

K〈X〉 K

AS

S
u ϕ

π S

∃!

Fact:
(
AS , π : K〈X〉 → AS , S := S mod IS

)
is the minimal representation of S

Ô extension of Kleene’s theorem: S is rational iff dim
(
AS
)
<∞ [Reutenaueur]

31 / 34



Duality and syntactic algebras A duality criterion

Preliminaries

RO of an algebra: given a monomial order, A := K〈X〉/I is associated with

TA := ker−1(I): reduction operator on K〈X〉

Notation: given a reduction operator T , let K̂ im(T ) ⊆ K〈〈X〉〉 defined by

S ∈ K̂ im(T ) iff 〈S | w〉 6= 0 ⇒ w ∈ im(T )

Theorem [C. 2020]

Let A := K〈X〉/I be an algebra. Then, A is syntactic iff

∃ a nonzero S ∈ ̂K im(TA) s.t. I is the greatest ideal included in I ⊕ ker(S)

Moreover, in this case A is the syntactic algebra of T ∗(S) ∈ K〈〈X〉〉.
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V. CONCLUSION AND PERSPECTIVES
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Conclusion and perspectives

Summary of presented notions and results:

. we introduced the topological confluence property and
a rewriting characterisation of standard bases

. we characterised topological confluence through lattice operations

. we formulated a duality criterion for an algebra to be syntactic

Further works:

. study abstract properties of topological rewriting systems
(e.g., C-R property, Newman’s Lemma, etc . . .)

. develop a geometrical framework for rewriting theory

. applications of noncommutative power series to the
problem of the minimal realisation

THANK YOU FOR LISTENING!
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