Topological rewriting systems applied to standard bases and syntactic algebras

Cyrille Chenavier

Computer Algebra Seminar - RISC

Hagenberg, November 5, 2020

Der Wissenschaftsfonds.

I. Motivations

- > Confluence property, polynomial reduction and Gröbner bases
- $\triangleright\,$ Rewriting formal power series and standard bases

II. Topological rewriting systems

- Display Topological confluence property
- Standard bases and topological confluence

III. Reduction operators

- Lattice structure
- Lattice characterisation of topological confluence

IV. Duality and syntactic algebras

- ▷ Syntactic algebras
- ▷ A duality criterion

V. Conclusion and perspectives

I. MOTIVATIONS

- solve decision problems (*e.g.*, membership problem)
- compute homological invariants (*e.g.*, Tor, Ext groups)
- analysis of functional systems (*e.g.*, integrability conditions)

- solve decision problems (*e.g.*, membership problem)
- compute homological invariants (*e.g.*, Tor, Ext groups)
- analysis of functional systems (*e.g.*, integrability conditions)

ALGEBRAIC REWRITING

Approach: orientation of relations in a structure \rightarrow notion of normal form

example: chosen orientation in $\mathbb{K}[x, y] \rightarrow$ induced by $yx \rightarrow xy$

NF computation: $3 yxx + xyx - xy \rightarrow 4 xyx - xy \rightarrow 4 xxy - xy$

- solve decision problems (*e.g.*, membership problem)
- compute homological invariants (*e.g.*, Tor, Ext groups)
- analysis of functional systems (*e.g.*, integrability conditions)

ALGEBRAIC REWRITING

Approach: orientation of relations in a structure → notion of normal form

example: chosen orientation in $\mathbb{K}[x, y] \rightarrow$ induced by $yx \rightarrow xy$

NF computation: $3 yxx + xyx - xy \rightarrow 4 xyx - xy \rightarrow 4 xxy - xy$

- solve decision problems (*e.g.*, membership problem)
- compute homological invariants (*e.g.*, Tor, Ext groups)
- analysis of functional systems (*e.g.*, integrability conditions)

ALGEBRAIC REWRITING

Approach: orientation of relations in a structure \rightarrow notion of normal form

example: chosen orientation in $\mathbb{K}[x, y] \rightarrow$ induced by $yx \rightarrow xy$

NF computation: $3 yxx + xyx - xy \rightarrow 4 xyx - xy \rightarrow 4 xxy - xy$

- solve decision problems (*e.g.*, membership problem)
- compute homological invariants (*e.g.*, Tor, Ext groups)
- analysis of functional systems (*e.g.*, integrability conditions)

ALGEBRAIC REWRITING

Approach: orientation of relations in a structure \rightarrow notion of normal form

example: chosen orientation in $\mathbb{K}[x, y] \rightarrow$ induced by $yx \rightarrow xy$

NF computation: $3 yxx + xyx - xy \rightarrow 4 xyx - xy \rightarrow 4 xxy - xy$

- solve decision problems (*e.g.*, membership problem)
- compute homological invariants (*e.g.*, Tor, Ext groups)
- analysis of functional systems (*e.g.*, integrability conditions)

ALGEBRAIC REWRITING

Approach: orientation of relations in a structure \rightarrow notion of normal form

example: chosen orientation in $\mathbb{K}[x, y] \rightarrow$ induced by $yx \rightarrow xy$

NF computation: $3 yxx + xyx - xy \rightarrow 4 xyx - xy \rightarrow 4 xxy - xy$

- solve decision problems (*e.g.*, membership problem)
- compute homological invariants (*e.g.*, Tor, Ext groups)
- analysis of functional systems (*e.g.*, integrability conditions)

ALGEBRAIC REWRITING

Approach: orientation of relations in a structure \rightarrow notion of normal form

example: chosen orientation in $\mathbb{K}[x, y] \rightarrow$ induced by $yx \rightarrow xy$

NF computation: $3 yxx + xyx - xy \rightarrow 4 xyx - xy \rightarrow 4 xxy - xy$

- solve decision problems (*e.g.*, membership problem)
- compute homological invariants (*e.g.*, Tor, Ext groups)
- analysis of functional systems (*e.g.*, integrability conditions)

ALGEBRAIC REWRITING

Approach: orientation of relations in a structure \rightarrow notion of normal form

example: chosen orientation in $\mathbb{K}[x, y] \rightarrow$ induced by $yx \rightarrow xy$

NF computation: $3 yxx + xyx - xy \rightarrow 4 xyx - xy \rightarrow 4 xxy - xy$

- solve decision problems (e.g., membership problem)
- compute homological invariants (e.g., Tor, Ext groups)
- analysis of functional systems (e.g., integrability conditions)

Approach: orientation of relations in a structure \rightarrow notion of normal form

example: chosen orientation in $\mathbb{K}[x, y] \rightarrow$ induced by $yx \rightarrow xy$

NF computation: $3 yxx + xyx - xy \rightarrow 4 xyx - xy \rightarrow 4 xxy - xy$

MOTIVATING PROBLEM

Given an algebra $\mathbf{A} := \mathbb{K} \langle X \mid R \rangle$ presented by generators X and relations R

$$\mathbf{A} := \mathbb{K}\langle X \rangle / I(R) \qquad \left(e.g., \quad \mathbb{K}[x, y] = \mathbb{K}\langle x, y \mid yx - xy \rangle \right)$$

Question: given an orientation of *R* (*e.g.*, $yx \rightarrow xy$)

do NF monomials form a linear basis of A?

MOTIVATING PROBLEM

Given an algebra $\mathbf{A} := \mathbb{K} \langle X \mid R \rangle$ presented by generators X and relations R

$$\mathbf{A} := \mathbb{K}\langle X \rangle / I(R) \qquad \left(e.g., \quad \mathbb{K}[x, y] = \mathbb{K}\langle x, y \mid yx - xy \rangle \right)$$

Question: given an orientation of *R* (*e.g.*, $yx \rightarrow xy$)

do NF monomials form a linear basis of A?

MOTIVATING PROBLEM

Given an algebra $\mathbf{A} := \mathbb{K} \langle X \mid R \rangle$ presented by generators X and relations R

$$\mathbf{A} := \mathbb{K}\langle X \rangle / I(R) \qquad \left(e.g., \quad \mathbb{K}[x, y] = \mathbb{K}\langle x, y \mid yx - xy \rangle \right)$$

Question: given an orientation of *R* (*e.g.*, $yx \rightarrow xy$)

do NF monomials form a linear basis of A?

NF monomials do not form a generating family $A := \mathbb{K}\langle x \mid x - xx \rangle$ orientation: $x \to xx$ $\rightarrow \dim_{\mathbb{K}}(A) = 2$ $(\overline{1} \text{ and } \overline{x} \text{ form a basis})$ $\rightarrow 1$ is the only NF monomial $(\forall n \ge 1: x^n \to x^{n+1})$

 \nexists infinite rewriting sequence

$$f_1 \rightarrow f_2 \rightarrow \cdots \rightarrow f_n \rightarrow f_{n+1} \rightarrow \ldots$$

NF monomials do not form a generating family $A := \mathbb{K}\langle x \mid x - xx \rangle$ orientation: $x \to xx$ $\rightarrow \dim_{\mathbb{K}}(A) = 2$ $(\overline{1} \text{ and } \overline{x} \text{ form a basis})$ $\rightarrow 1$ is the only NF monomial $(\forall n \ge 1: x^n \to x^{n+1})$

 $\begin{array}{l} \text{Definition:} \ \rightarrow \ \text{is called terminating} \\ \text{if} \end{array}$

 \nexists infinite rewriting sequence

$$f_1 \rightarrow f_2 \rightarrow \cdots \rightarrow f_n \rightarrow f_{n+1} \rightarrow \ldots$$

NF monomials do not form a generating family $A := \mathbb{K}\langle x \mid x - xx \rangle$ orientation: $x \to xx$ $\Rightarrow \dim_{\mathbb{K}}(A) = 2$ $(\overline{1} \text{ and } \overline{x} \text{ form a basis})$ $\Rightarrow 1$ is the only NF monomial $(\forall n \ge 1: x^n \to x^{n+1})$

 $\begin{array}{l} \text{Definition:} \ \rightarrow \ \text{is called terminating} \\ \text{if} \end{array}$

 \nexists infinite rewriting sequence

$$f_1 \rightarrow f_2 \rightarrow \cdots \rightarrow f_n \rightarrow f_{n+1} \rightarrow \ldots$$

Termination implies: NF monomials are generators Prop: let $\mathbf{A} := \mathbb{K}\langle X \mid R \rangle$. If \rightarrow is a terminating orientation, then {NF monomials} is generating

Monomial orders

Well-founded total orders on X^* , product compatible

"Gröbner bases \leftrightarrow confluent orientations"

Ideal membership problem: given a G.B. R of I and $f \in \mathbb{K}\langle X \rangle$, how to decide $f \in I$?

- → reduce f into normal form \hat{f} using R and test $\hat{f} = 0$
- $\rightarrow \hat{f}$ is independent from the reduction path!

"Gröbner bases \leftrightarrow confluent orientations"

Ideal membership problem: given a G.B. R of I and $f \in \mathbb{K}\langle X \rangle$, how to decide $f \in I$?

- → reduce f into normal form \hat{f} using R and test $\hat{f} = 0$
- $\rightarrow \hat{f}$ is independent from the reduction path!

"Gröbner bases \leftrightarrow confluent orientations"

Ideal membership problem: given a G.B. R of I and $f \in \mathbb{K}\langle X \rangle$, how to decide $f \in I$?

- → reduce f into normal form \hat{f} using R and test $\hat{f} = 0$
- $\rightarrow \hat{f}$ is independent from the reduction path!

"Gröbner bases \leftrightarrow confluent orientations"

Ideal membership problem: given a G.B. R of I and $f \in \mathbb{K}\langle X \rangle$, how to decide $f \in I$?

- → reduce f into normal form \hat{f} using R and test $\hat{f} = 0$
- $\rightarrow \hat{f}$ is independent from the reduction path!

PBW theorem: let \mathscr{L} be a Lie algebra and let X be a totally well-ordered basis of \mathscr{L} . Then, the universal enveloping algebra $U(\mathscr{L})$ of \mathscr{L} admits as a basis

$$\left\{x_1^{\alpha_1} \dots x_k^{\alpha_k} \mid x_i < x_{i+1} \in X, \ \alpha_i \in \mathbb{N}\right\}$$

"Gröbner bases \leftrightarrow confluent orientations"

Ideal membership problem: given a G.B. R of I and $f \in \mathbb{K}\langle X \rangle$, how to decide $f \in I$?

- → reduce f into normal form \hat{f} using R and test $\hat{f} = 0$
- $\rightarrow \hat{f}$ is independent from the reduction path!

PBW theorem: let \mathscr{L} be a Lie algebra and let X be a totally well-ordered basis of \mathscr{L} . Then, the universal enveloping algebra $U(\mathscr{L})$ of \mathscr{L} admits as a basis

$$\left\{x_1^{\alpha_1} \dots x_k^{\alpha_k} \mid x_i < x_{i+1} \in X, \ \alpha_i \in \mathbb{N}\right\}$$

Ideas of the proof:

- → presentation of $U(\mathscr{L})$: $\mathbb{K}\langle X \mid yx xy [y, x], x \neq y \in X \rangle$
- → choice of terminating orientation: $yx \rightarrow xy + [y, x]$, where x < y
- → this orientation is confluent (equivalent to Jacobi identity)
- → a basis of $U(\mathscr{L})$ is composed of NF monomials: $x_1^{\alpha_1} \dots x_k^{\alpha_k}$ s.t. $x_i < x_{i+1}$

Definition: formal power series are linear maps $S : \mathbb{K}\langle X \rangle \to \mathbb{K}$, denoted by

$$S = \sum_{w \in X^*} (S, w) w$$

Leading monomials: selected w.r.t. the opposite order of a monomial order

→ e.g.,
$$\operatorname{Im}\left(x+x^2+x^3+\dots\right)=x$$

Definition: formal power series are linear maps $S : \mathbb{K}\langle X \rangle \to \mathbb{K}$, denoted by

$$S = \sum_{w \in X^*} (S, w) w$$

Leading monomials: selected w.r.t. the opposite order of a monomial order

→ e.g.,
$$\operatorname{Im}\left(x+x^2+x^3+\dots\right)=x$$

Definition: formal power series are linear maps $S : \mathbb{K}\langle X \rangle \to \mathbb{K}$, denoted by

$$S = \sum_{w \in X^*} (S, w) w$$

Leading monomials: selected w.r.t. the opposite order of a monomial order

→ e.g.,
$$\operatorname{Im}\left(x+x^2+x^3+\ldots\right)=x$$

Gröbner bases

Fix a polynomial ideal *I* spanned by *G* and a monomial order

G.B. def.: $Im(I) = \langle Im(G) \rangle$

Rewriting characterisation:

 $\rightarrow_{\textit{G}}$ is a confluent orientation

Standard bases

Fix a power series ideal *I* spanned by *S* and a monomial order

S.B. def.: $Im(I) = \langle Im(S) \rangle$ (w.r.t. the opposite order)

Rewriting characterisation: ?????

Definition: formal power series are linear maps $S : \mathbb{K}\langle X \rangle \to \mathbb{K}$, denoted by

$$S = \sum_{w \in X^*} (S, w) w$$

Leading monomials: selected w.r.t. the opposite order of a monomial order

→ e.g.,
$$\operatorname{Im}\left(x+x^2+x^3+\ldots\right)=x$$

Gröbner bases

Fix a polynomial ideal *I* spanned by *G* and a monomial order

G.B. def.: $Im(I) = \langle Im(G) \rangle$

Rewriting characterisation:

 $\rightarrow_{\textit{G}}$ is a confluent orientation

Standard bases

Fix a power series ideal *I* spanned by *S* and a monomial order

S.B. def.: $Im(I) = \langle Im(S) \rangle$ (w.r.t. the opposite order)

Rewriting characterisation: ?????

Standard bases do not induce confluent rewriting systems

Example of standard basis: $X := \{z < y < x\}$ and I is generated by the standard basis

$$S := \left\{ z - x \qquad z - y \qquad x - x^2 \qquad y - y^2 \right\}$$

A non confluent diagram:

Fact: the two rewriting paths converge to 0 for the X-adic topology

Standard bases do not induce confluent rewriting systems

Example of standard basis: $X := \{z < y < x\}$ and I is generated by the standard basis

$$S := \left\{ z - x \qquad z - y \qquad x - x^2 \qquad y - y^2 \right\}$$

A non confluent diagram:

Fact: the two rewriting paths converge to 0 for the X-adic topology

OBJECTIVE OF THE TALK:

obtain a rewriting characterisation of standard bases

using a topological adaptation of the confluence property

Standard bases do not induce confluent rewriting systems

Example of standard basis: $X := \{z < y < x\}$ and I is generated by the standard basis

$$S := \left\{ z - x \qquad z - y \qquad x - x^2 \qquad y - y^2 \right\}$$

A non confluent diagram:

Fact: the two rewriting paths converge to 0 for the X-adic topology

II. TOPOLOGICAL REWRITING SYSTEMS

Objective: introduce a rewriting framework

that takes topology into account

Definition: a topological rewriting system (A, \rightarrow, τ) is given by

a set A equipped with a binary relation ightarrow and a topology au

Objective: introduce a rewriting framework

that takes topology into account

Definition: a topological rewriting system (A, \rightarrow, τ) is given by

a set A equipped with a binary relation ightarrow and a topology au

Objective: introduce a rewriting framework

that takes topology into account

Definition: a topological rewriting system (A, \rightarrow, τ) is given by

a set A equipped with a binary relation ightarrow and a topology au

UNDERLYING IDEAS

The set A: set of syntactic expressions (polynomials, formal power series, λ/Σ -terms, ...)

The binary relation \rightarrow : represents rewriting steps

The topology τ : used to formalize the ideas

"asymptotic rewriting and asymptotic confluence"

Asymptotic rewriting sequences

Let (A, \rightarrow, τ) be a topological rewriting system

Idea: a asymptotically rewrites into b if a rewrites arbitrarily close to b

Formally: we define \rightarrow as being the $\tau_A^{\text{dis}} \times \tau$ -closure of \rightarrow , *i.e.*

$$a \twoheadrightarrow b$$
 iff $(\forall U(b) : \exists . \in U(b), a \stackrel{*}{\rightarrow} .)$

Asymptotic rewriting sequences

Let (A, \rightarrow, τ) be a topological rewriting system

Idea: a asymptotically rewrites into b if a rewrites arbitrarily close to b

Formally: we define \twoheadrightarrow as being the $\tau_A^{\text{dis}} \times \tau$ -closure of \rightarrow , *i.e.*

$$\mathbf{a} \twoheadrightarrow \mathbf{b}$$
 iff $\left(\forall \mathbf{U}(\mathbf{b}) : \exists . \in U(b), a \stackrel{*}{\rightarrow} . \right)$

Pictorially:

Topological confluence property

Let (A, \rightarrow, τ) be a topological rewriting system

Definition: \rightarrow is τ -confluent if divergent reductions asymptotically converge

Topological confluence property

Let (A, \rightarrow, τ) be a topological rewriting system

Definition: \rightarrow is τ -confluent if divergent reductions asymptotically converge

Alternatively: for every neighbourhood of •, there are rewriting sequences s.t.

Link with

abstract rewriting theory

Abstract rewriting systems: (A, \rightarrow, τ) , where $\tau := \tau_A^{\text{dis}}$ is the discrete topology

→ asymptotic rewriting brings nothing new, e.g. τ -confluence \Leftrightarrow confluence

X-adic topology

on formal power series

Distance between FPSs: the distance between $S, S' \in \mathbb{K}\langle \langle X \rangle \rangle$ is defined by

$$d(S,S'):=rac{1}{2^{
u(S-S')}}, \qquad ext{where} \quad
u(S):=\minig(\deg(w)\mid \quad (S,w)
eq 0ig)$$

→ "close series coincide until high degrees"

Definition: the X-adic topology is the topology τ_X on $\mathbb{K}\langle\langle X \rangle\rangle$ induced by d

X-adic topology

on formal power series

Distance between FPSs: the distance between $S, S' \in \mathbb{K}\langle \langle X \rangle \rangle$ is defined by

$$d(S,S'):=rac{1}{2^{
u(S-S')}}, \qquad ext{where} \quad
u(S):=\minig(\deg(w)\mid \quad (S,w)
eq 0ig)$$

→ "close series coincide until high degrees"

Definition: the X-adic topology is the topology τ_X on $\mathbb{K}\langle\langle X \rangle\rangle$ induced by d

X-adic topology

on formal power series

Distance between FPSs: the distance between $S, S' \in \mathbb{K}\langle\langle X \rangle\rangle$ is defined by

$$d(S,S'):=rac{1}{2^{
u(S-S')}}, \qquad ext{where} \quad
u(S):= \minig(\deg(w)\mid \quad (S,w)
eq 0ig)$$

→ "close series coincide until high degrees"

Definition: the X-adic topology is the topology τ_X on $\mathbb{K}\langle\langle X \rangle\rangle$ induced by d

Theorem [C. 2020]

Let *I* be a formal power series ideal, *S* be a subset of *I*, and < be a monomial order. We have the following equivalence:

S is a standard basis of $I \Leftrightarrow S$ is a generating set of I and \rightarrow_S is τ_X -confluent

Illustration of the theorem

Example: consider $X := \{z < y < x\}$ and I is generated by the standard basis

$$S := \left\{ z - x \quad z - y \quad x - x^2 \quad y - y^2 \right\}$$

Rewriting diagram: we have the following τ_X -confluent diagram

Argument: the sequences $(x^n)_n, (y^n)_n \subseteq \mathbb{K}\langle\langle X \rangle\rangle$ both converge to $\mathbf{0}$ since

$$d(\mathbf{0}, x^n) = d(\mathbf{0}, y^n) = \frac{1}{2^n}$$

III. REDUCTION OPERATORS

Example: $yy \rightarrow yx \quad \rightsquigarrow \quad \text{left/right reduction operators on 3 letter words}$

Properties of L and R: they are linear projectors of $\mathbb{K}X^{(3)}$ (or $\mathbb{K}\langle X \rangle$) and

compatible with the deglex order induced by x < y

Example: $yy \rightarrow yx \quad \rightsquigarrow \quad \text{left/right reduction operators on 3 letter words}$

Properties of L and R: they are linear projectors of $\mathbb{K}X^{(3)}$ **(or** $\mathbb{K}\langle X \rangle$ **) and**

compatible with the deglex order induced by x < y

Functional representation of (discrete) rewriting systems

Example: $yy \rightarrow yx \quad \rightsquigarrow \quad \text{left/right reduction operators on 3 letter words}$

Properties of L and R: they are linear projectors of $\mathbb{K}X^{(3)}$ (or $\mathbb{K}\langle X \rangle$) and

compatible with the deglex order induced by x < y

Definition: a reduction operator on a vector space V equipped with a well-ordered basis (G, <) is a linear projector of V s.t.

 $\forall g \in G:$ T(g) = g or Im(T(g)) < g

Lattice structure

Proposition: the set of reduction operators admits lattice operations s.t.

 $T_1 \wedge T_2$ computes minimal normal forms

Example: $L \wedge R$ maps 3-letter words starting with y to yxx

Lattice structure

Proposition: the set of reduction operators admits lattice operations s.t.

 $T_1 \wedge T_2$ computes minimal normal forms

Example: $L \wedge R$ maps 3-letter words starting with y to yxx

Lattice structure

Proposition: the set of reduction operators admits lattice operations s.t.

 $T_1 \wedge T_2$ computes minimal normal forms

Example: $L \wedge R$ maps 3-letter words starting with y to yxx

Functional characterisation of confluence (C. 2018): the rewriting relation induced by T_1 and T_2 is confluent iff $im(T_1) \cap im(T_2) = im(T_1 \wedge T_2)$

Functional characterisation of confluence (C. 2018): the rewriting relation induced by T_1 and T_2 is confluent iff $im(T_1) \cap im(T_2) = im(T_1 \wedge T_2)$

Locally well-ordered total bases

Fix a metric vector space (V, d) together with a subset $G \subset V$ s.t.

Totality: G is a free family that generates a dense subspace of V

Locally well-ordered: *G* is equipped with a total order < and admits a strictly positive graduation $G = \prod G^{(n)}$ s.t.

→
$$\forall g \in G^{(n)}$$
: $1/n \le d(g,0) < 1/(n-1)$

→ < restricts to well-orders on $G^{(n)}$'s

Locally well-ordered total bases

Fix a metric vector space (V, d) together with a subset $G \subset V$ s.t.

Totality: G is a free family that generates a dense subspace of V

Locally well-ordered: *G* is equipped with a total order < and admits a strictly positive graduation $G = \prod G^{(n)}$ s.t.

→
$$\forall g \in G^{(n)}$$
: $1/n \le d(g,0) < 1/(n-1)$

→ < restricts to well-orders on $G^{(n)}$'s

Definition: a reduction operator is a continuous linear projector of V s.t.

$$\forall g \in G: \quad T(g) = g \quad \text{or} \quad \operatorname{Im}(T(g)) < g$$

Theorem [C. 2020]

Let (V, d) be a metric vector space and let F be a set of reduction operators over V. We have the following equivalence:

\rightarrow_F	is topologically confluent	\Leftrightarrow	$im(\wedge F)$	=	\bigcap	im(T)
-----------------	----------------------------	-------------------	----------------	---	-----------	-------

 $T \in F$

IV. DUALITY AND SYNTACTIC ALGEBRAS

The functional approach brings DUALITY $\left\{ reduction operators on V \right\} \rightarrow \left\{ reduction operators on V^* \right\}$ $T \mapsto T^! := id_{V^*} - T^*$ $\Rightarrow \forall \varphi \in V^* : T^!(\varphi) = \varphi - \varphi \circ T \in V^*$

The functional approach brings DUALITY $\begin{cases}
\text{reduction operators on } V \\
T & \mapsto & T^! := id_{V^*} - T^* \\
\Rightarrow \forall \varphi \in V^* : & T^!(\varphi) = \varphi - \varphi \circ T \in V^*
\end{cases}$

Some properties of the dual

Total basis of V^* : dual to the total basis of V (under some hypotheses)

→
$$T^*$$
 is not a RO since $\left(\forall g \in G : T^*(g^*) = g^* + \text{(other terms)} \right)$

Dual equations: $\operatorname{im}(T^{!}) = \operatorname{im}(T)^{\perp}$ $\operatorname{ker}(T^{!}) = \operatorname{ker}(T)^{\perp}$

Duality and formal power series

Remark: from $\mathbb{K}\langle\langle X\rangle\rangle = (\mathbb{K}\langle X\rangle)^*$, there is a duality

$$\Big\{ ext{reduction operators on }\mathbb{K}\langle X
angle\Big\} \quad o \quad \Big\{ ext{reduction operators on }\mathbb{K}\langle\langle X
angle
angle\Big\}$$

Application: duality criterion for an algebra to be syntactic (next slides)

$$\mathbf{A}_{S} := \mathbb{K}\langle X \rangle / I_{S}$$

$$\mathbf{A}_{S} := \mathbb{K}\langle X \rangle / I_{S}$$

$$\mathbf{A}_{S} := \mathbb{K}\langle X \rangle / I_{S}$$

$$\mathbf{A}_{S} := \mathbb{K}\langle X \rangle / I_{S}$$

Preliminaries

RO of an algebra: given a monomial order, $\mathbf{A} := \mathbb{K}\langle X \rangle / I$ is associated with $T_{\mathbf{A}} := \ker^{-1}(I)$: reduction operator on $\mathbb{K}\langle X \rangle$ Notation: given a reduction operator T, let $\widehat{\mathrm{Kim}(T)} \subseteq \mathbb{K}\langle\langle X \rangle\rangle$ defined by $S \in \widehat{\mathrm{Kim}(T)}$ iff $\langle S \mid w \rangle \neq 0 \Rightarrow w \in \mathrm{im}(T)$

Theorem [C. 2020]

Let $\mathbf{A} := \mathbb{K} \langle X \rangle / I$ be an algebra. Then, \mathbf{A} is syntactic iff

 \exists a nonzero $S \in \mathbb{K} \widehat{\operatorname{im}(T_A)}$ s.t. *I* is the greatest ideal included in $I \oplus \ker(S)$

Moreover, in this case **A** is the syntactic algebra of $T^*(S) \in \mathbb{K}\langle\langle X \rangle\rangle$.

V. CONCLUSION AND PERSPECTIVES

Conclusion and perspectives

Summary of presented notions and results:

- we introduced the topological confluence property and a rewriting characterisation of standard bases
- $\triangleright\,$ we characterised topological confluence through lattice operations
- $\triangleright\,$ we formulated a duality criterion for an algebra to be syntactic

Further works:

- study abstract properties of topological rewriting systems (e.g., C-R property, Newman's Lemma, etc ...)
- $\triangleright\,$ develop a geometrical framework for rewriting theory
- applications of noncommutative power series to the problem of the minimal realisation

Conclusion and perspectives

Summary of presented notions and results:

- we introduced the topological confluence property and a rewriting characterisation of standard bases
- $\triangleright\,$ we characterised topological confluence through lattice operations
- $\triangleright\,$ we formulated a duality criterion for an algebra to be syntactic

Further works:

- study abstract properties of topological rewriting systems (e.g., C-R property, Newman's Lemma, etc ...)
- $\triangleright\,$ develop a geometrical framework for rewriting theory
- applications of noncommutative power series to the problem of the minimal realisation

THANK YOU FOR LISTENING!