Syzygies among reduction operators

Cyrille Chenavier

INRIA Lille - Nord Europe
Équipe GAIA

October 2, 2018

Plan

I. Motivations

\triangleright Various notions of syzygy
\triangleright Computation of syzygies
II. Reduction operators
\triangleright Linear algebra, syzygies and useless reductions
\triangleright Reduction operators and labelled reductions
III. Lattice description of syzygies
\triangleright Lattice structure of reduction operators
\triangleright Construction of a basis of syzygies
\triangleright A lattice criterion for rejecting useless reductions

Plan

I. Motivations

Various notions of syzygy

- Consider the following questions:
\triangleright Standardisation problems: given two vertices in an abstract rewriting system

Various notions of syzygy

- Consider the following questions:
\triangleright Standardisation problems: given two vertices in an abstract rewriting system

how to choose a "standard" path between them?

Various notions of syzygy

- Consider the following questions:
\triangleright Standardisation problems: given two vertices in an abstract rewriting system

how to choose a "standard" path between them?
\triangleright Construction of free resolutions: given an augmented algebra $\mathbf{A}\langle X \mid R\rangle$ and

$$
\mathbf{A}[R] \xrightarrow{d} \mathbf{A}[X] \xrightarrow{d} \mathbf{A} \xrightarrow{\varepsilon} \mathbb{K} \longrightarrow 0,
$$

Various notions of syzygy

- Consider the following questions:
\triangleright Standardisation problems: given two vertices in an abstract rewriting system

how to choose a "standard" path between them?
\triangleright Construction of free resolutions: given an augmented algebra $\mathbf{A}\langle X \mid R\rangle$ and

$$
\mathbf{A}[S] \xrightarrow{d} \mathbf{A}[R] \xrightarrow{d} \mathbf{A}[X] \xrightarrow{d} \mathbf{A} \xrightarrow{\varepsilon} \mathbb{K} \longrightarrow 0,
$$

how to extend the beginning of a resolution of the ground field?

Various notions of syzygy

- Consider the following questions:
\triangleright Standardisation problems: given two vertices in an abstract rewriting system

how to choose a "standard" path between them?
\triangleright Construction of free resolutions: given an augmented algebra $\mathbf{A}\langle X \mid R\rangle$ and

$$
\mathbf{A}[S] \xrightarrow{d} \mathbf{A}[R] \xrightarrow{d} \mathbf{A}[X] \xrightarrow{d} \mathbf{A} \xrightarrow{\varepsilon} \mathbb{K} \longrightarrow 0,
$$

how to extend the beginning of a resolution of the ground field?
\triangleright Detecting useless critical pairs: how to obtain a criterion for rejecting useless critical pairs during the completion procedure?

Various notions of syzygy

- Consider the following questions:
\triangleright Standardisation problems: given two vertices in an abstract rewriting system

how to choose a "standard" path between them?
\triangleright Construction of free resolutions: given an augmented algebra $\mathbf{A}\langle X \mid R\rangle$ and

$$
\mathbf{A}[S] \xrightarrow{d} \mathbf{A}[R] \xrightarrow{d} \mathbf{A}[X] \xrightarrow{d} \mathbf{A} \xrightarrow{\varepsilon} \mathbb{K} \longrightarrow 0,
$$

how to extend the beginning of a resolution of the ground field?
\triangleright Detecting useless critical pairs: how to obtain a criterion for rejecting useless critical pairs during the completion procedure?

- A method for studying these problems:
\triangleright compute a generating set for the associated notion of syzygy

Various notions of syzygy

- Consider the following questions:
\triangleright Standardisation problems: given two vertices in an abstract rewriting system

how to choose a "standard" path between them?
\triangleright Construction of free resolutions: given an augmented algebra $\mathbf{A}\langle X \mid R\rangle$ and

$$
\mathbf{A}[S] \xrightarrow{d} \mathbf{A}[R] \xrightarrow{d} \mathbf{A}[X] \xrightarrow{d} \mathbf{A} \xrightarrow{\varepsilon} \mathbb{K} \longrightarrow 0,
$$

how to extend the beginning of a resolution of the ground field?
\triangleright Detecting useless critical pairs: how to obtain a criterion for rejecting useless critical pairs during the completion procedure?

- A method for studying these problems:
\triangleright compute a generating set for the associated notion of syzygy (two-dimensional cell

Various notions of syzygy

- Consider the following questions:
\triangleright Standardisation problems: given two vertices in an abstract rewriting system

how to choose a "standard" path between them?
\triangleright Construction of free resolutions: given an augmented algebra $\mathbf{A}\langle X \mid R\rangle$ and

$$
\mathbf{A}[S] \xrightarrow{d} \mathbf{A}[R] \xrightarrow{d} \mathbf{A}[X] \xrightarrow{d} \mathbf{A} \xrightarrow{\varepsilon} \mathbb{K} \longrightarrow 0,
$$

how to extend the beginning of a resolution of the ground field?
\triangleright Detecting useless critical pairs: how to obtain a criterion for rejecting useless critical pairs during the completion procedure?

- A method for studying these problems:
\triangleright compute a generating set for the associated notion of syzygy (two-dimensional cell, homological syzygy

Various notions of syzygy

- Consider the following questions:
\triangleright Standardisation problems: given two vertices in an abstract rewriting system

how to choose a "standard" path between them?
\triangleright Construction of free resolutions: given an augmented algebra $\mathbf{A}\langle X \mid R\rangle$ and

$$
\mathbf{A}[S] \xrightarrow{d} \mathbf{A}[R] \xrightarrow{d} \mathbf{A}[X] \xrightarrow{d} \mathbf{A} \xrightarrow{\varepsilon} \mathbb{K} \longrightarrow 0,
$$

how to extend the beginning of a resolution of the ground field?
\triangleright Detecting useless critical pairs: how to obtain a criterion for rejecting useless critical pairs during the completion procedure?

- A method for studying these problems:
\triangleright compute a generating set for the associated notion of syzygy (two-dimensional cell, homological syzygy, identity among relations

Various notions of syzygy

- Consider the following questions:
\triangleright Standardisation problems: given two vertices in an abstract rewriting system

how to choose a "standard" path between them?
\triangleright Construction of free resolutions: given an augmented algebra $\mathbf{A}\langle X \mid R\rangle$ and

$$
\mathbf{A}[S] \xrightarrow{d} \mathbf{A}[R] \xrightarrow{d} \mathbf{A}[X] \xrightarrow{d} \mathbf{A} \xrightarrow{\varepsilon} \mathbb{K} \longrightarrow 0,
$$

how to extend the beginning of a resolution of the ground field?
\triangleright Detecting useless critical pairs: how to obtain a criterion for rejecting useless critical pairs during the completion procedure?

- A method for studying these problems:
\triangleright compute a generating set for the associated notion of syzygy (two-dimensional cell, homological syzygy, identity among relations, \cdots).

Computation of syzygies

- Consider an algebra A presented by $\langle X \mid R\rangle$.

Computation of syzygies

- Consider an algebra A presented by $\langle X \mid R\rangle$.
\triangleright Question: how are the syzygies of $\langle X \mid R\rangle$ generated?

Computation of syzygies

- Consider an algebra A presented by $\langle X \mid R\rangle$.
\triangleright Question: how are the syzygies of $\langle X \mid R\rangle$ generated?
- If \mathbf{A} is quadratic, a candidate is the Koszul dual $\mathbf{A}^{!}\left\langle X^{*} \mid R^{\perp}\right\rangle$.

Computation of syzygies

- Consider an algebra A presented by $\langle X \mid R\rangle$.
\triangleright Question: how are the syzygies of $\langle X \mid R\rangle$ generated?
- If \mathbf{A} is quadratic, a candidate is the Koszul dual $\mathbf{A}^{!}\left\langle X^{*} \mid R^{\perp}\right\rangle$.
- Methods from rewriting theory

Computation of syzygies

- Consider an algebra A presented by $\langle X \mid R\rangle$.
\triangleright Question: how are the syzygies of $\langle X \mid R\rangle$ generated?
- If \mathbf{A} is quadratic, a candidate is the Koszul dual $\mathbf{A}^{!}\left\langle X^{*} \mid R^{\perp}\right\rangle$.
- Methods from rewriting theory:
\triangleright If R is a Gröbner basis, the syzygies are spanned by critical pairs of R.

Computation of syzygies

- Consider an algebra A presented by $\langle X \mid R\rangle$.
\triangleright Question: how are the syzygies of $\langle X \mid R\rangle$ generated?
- If \mathbf{A} is quadratic, a candidate is the Koszul dual $\mathbf{A}^{!}\left\langle X^{*} \mid R^{\perp}\right\rangle$.
- Methods from rewriting theory:
\triangleright If R is a Gröbner basis, the syzygies are spanned by critical pairs of R.
\triangleright If R is a not a Gröbner basis, apply the completion-reduction procedure

Computation of syzygies

- Consider an algebra A presented by $\langle X \mid R\rangle$.
\triangleright Question: how are the syzygies of $\langle X \mid R\rangle$ generated?
- If \mathbf{A} is quadratic, a candidate is the Koszul dual $\mathbf{A}^{!}\left\langle X^{*} \mid R^{\perp}\right\rangle$.
- Methods from rewriting theory:
\triangleright If R is a Gröbner basis, the syzygies are spanned by critical pairs of R.
\triangleright If R is a not a Gröbner basis, apply the completion-reduction procedure:
\triangleright Complete R into a Gröbner basis \bar{R}.

Computation of syzygies

- Consider an algebra A presented by $\langle X \mid R\rangle$.
\triangleright Question: how are the syzygies of $\langle X \mid R\rangle$ generated?
- If \mathbf{A} is quadratic, a candidate is the Koszul dual $\mathbf{A}^{!}\left\langle X^{*} \mid R^{\perp}\right\rangle$.
- Methods from rewriting theory:
\triangleright If R is a Gröbner basis, the syzygies are spanned by critical pairs of R.
\triangleright If R is a not a Gröbner basis, apply the completion-reduction procedure:
\triangleright Complete R into a Gröbner basis \bar{R}.
\triangleright Let \bar{S} be the set of critical pairs of \bar{R}.

Computation of syzygies

- Consider an algebra A presented by $\langle X \mid R\rangle$.
\triangleright Question: how are the syzygies of $\langle X \mid R\rangle$ generated?
- If \mathbf{A} is quadratic, a candidate is the Koszul dual $\mathbf{A}^{!}\left\langle X^{*} \mid R^{\perp}\right\rangle$.
- Methods from rewriting theory:
\triangleright If R is a Gröbner basis, the syzygies are spanned by critical pairs of R.
\triangleright If R is a not a Gröbner basis, apply the completion-reduction procedure:
\triangleright Complete R into a Gröbner basis \bar{R}.
\triangleright Let \bar{S} be the set of critical pairs of \bar{R}.
\triangleright Reduce \bar{S} and \bar{R} (algebraic Morse theory, homotopical reduction, \cdots).

Computation of syzygies

- Consider an algebra A presented by $\langle X \mid R\rangle$.
\triangleright Question: how are the syzygies of $\langle X \mid R\rangle$ generated?
- If \mathbf{A} is quadratic, a candidate is the Koszul dual $\mathbf{A}^{!}\left\langle X^{*} \mid R^{\perp}\right\rangle$.
- Methods from rewriting theory:
\triangleright If R is a Gröbner basis, the syzygies are spanned by critical pairs of R.
\triangleright If R is a not a Gröbner basis, apply the completion-reduction procedure:
\triangleright Complete R into a Gröbner basis \bar{R}.
\triangleright Let \bar{S} be the set of critical pairs of \bar{R}.
\triangleright Reduce \bar{S} and \bar{R} (algebraic Morse theory, homotopical reduction, \cdots).
- Our goals:

Computation of syzygies

- Consider an algebra A presented by $\langle X \mid R\rangle$.
\triangleright Question: how are the syzygies of $\langle X \mid R\rangle$ generated?
- If \mathbf{A} is quadratic, a candidate is the Koszul dual $\mathbf{A}^{!}\left\langle X^{*} \mid R^{\perp}\right\rangle$.
- Methods from rewriting theory:
\triangleright If R is a Gröbner basis, the syzygies are spanned by critical pairs of R.
\triangleright If R is a not a Gröbner basis, apply the completion-reduction procedure:
\triangleright Complete R into a Gröbner basis \bar{R}.
\triangleright Let \bar{S} be the set of critical pairs of \bar{R}.
\triangleright Reduce \bar{S} and \bar{R} (algebraic Morse theory, homotopical reduction, \cdots).
- Our goals:
\triangleright Compute syzygies of abstract rewriting systems using the lattice structure of reduction operators.

Computation of syzygies

- Consider an algebra A presented by $\langle X \mid R\rangle$.
\triangleright Question: how are the syzygies of $\langle X \mid R\rangle$ generated?
- If \mathbf{A} is quadratic, a candidate is the Koszul dual $\mathbf{A}^{!}\left\langle X^{*} \mid R^{\perp}\right\rangle$.
- Methods from rewriting theory:
\triangleright If R is a Gröbner basis, the syzygies are spanned by critical pairs of R.
\triangleright If R is a not a Gröbner basis, apply the completion-reduction procedure:
\triangleright Complete R into a Gröbner basis \bar{R}.
\triangleright Let \bar{S} be the set of critical pairs of \bar{R}.
\triangleright Reduce \bar{S} and \bar{R} (algebraic Morse theory, homotopical reduction, \cdots).
- Our goals:
\triangleright Compute syzygies of abstract rewriting systems using the lattice structure of reduction operators.
\triangleright Deduce a lattice criterion for rejecting useless reductions during the completion procedure.

Plan

II. Reduction operators

Linear algebra, syzygies and useless reductions

- We consider abstract rewriting systems (V, \longrightarrow) such that V is a vector space and every reduction is labelled.

Linear algebra, syzygies and useless reductions

- We consider abstract rewriting systems (V, \longrightarrow) such that V is a vector space and every reduction is labelled.
\triangleright e.g., V is spanned by the letters $\{a, b, c, d, e\}$ submitted to the reductions

Linear algebra, syzygies and useless reductions

- We consider abstract rewriting systems (V, \longrightarrow) such that V is a vector space and every reduction is labelled.
\triangleright e.g., V is spanned by the letters $\{a, b, c, d, e\}$ submitted to the reductions

\triangleright The reductions C and F are useless!

Linear algebra, syzygies and useless reductions

- We consider abstract rewriting systems (V, \longrightarrow) such that V is a vector space and every reduction is labelled.
\triangleright e.g., V is spanned by the letters $\{a, b, c, d, e\}$ submitted to the reductions

\triangleright The reductions C and F are useless!

Linear algebra, syzygies and useless reductions

- We consider abstract rewriting systems (V, \longrightarrow) such that V is a vector space and every reduction is labelled.
\triangleright e.g., V is spanned by the letters $\{a, b, c, d, e\}$ submitted to the reductions

\triangleright The reductions C and F are useless!

Linear algebra, syzygies and useless reductions

- We consider abstract rewriting systems (V, \longrightarrow) such that V is a vector space and every reduction is labelled.
\triangleright e.g., V is spanned by the letters $\{a, b, c, d, e\}$ submitted to the reductions

\triangleright The reductions C and F are useless!

Linear algebra, syzygies and useless reductions

- We consider abstract rewriting systems (V, \longrightarrow) such that V is a vector space and every reduction is labelled.
\triangleright e.g., V is spanned by the letters $\{a, b, c, d, e\}$ submitted to the reductions

\triangleright The reductions C and F are useless!
- How to detect useless reductions using syzygies and linear algebra?

Linear algebra, syzygies and useless reductions

- We consider abstract rewriting systems (V, \longrightarrow) such that V is a vector space and every reduction is labelled.
\triangleright e.g., V is spanned by the letters $\{a, b, c, d, e\}$ submitted to the reductions

\triangleright The reductions C and F are useless!
- How to detect useless reductions using syzygies and linear algebra?
i. Replace each reduction by the difference between its source and its target.

Linear algebra, syzygies and useless reductions

- We consider abstract rewriting systems (V, \longrightarrow) such that V is a vector space and every reduction is labelled.
\triangleright e.g., V is spanned by the letters $\{a, b, c, d, e\}$ submitted to the reductions

i. $\mathbf{A}^{\prime}=e-c$
\triangleright The reductions C and F are useless!
- How to detect useless reductions using syzygies and linear algebra?
i. Replace each reduction by the difference between its source and its target.

Linear algebra, syzygies and useless reductions

- We consider abstract rewriting systems (V, \longrightarrow) such that V is a vector space and every reduction is labelled.
\triangleright e.g., V is spanned by the letters $\{a, b, c, d, e\}$ submitted to the reductions

i. $\mathbf{A}^{\prime}=e-c, \mathbf{B}^{\prime}=c-b$
\triangleright The reductions C and F are useless!
- How to detect useless reductions using syzygies and linear algebra?
i. Replace each reduction by the difference between its source and its target.

Linear algebra, syzygies and useless reductions

- We consider abstract rewriting systems (V, \longrightarrow) such that V is a vector space and every reduction is labelled.
\triangleright e.g., V is spanned by the letters $\{a, b, c, d, e\}$ submitted to the reductions

i. $\mathbf{A}^{\prime}=e-c, \mathbf{B}^{\prime}=c-b, \mathbf{C}^{\prime}=e-b$
\triangleright The reductions C and F are useless!
- How to detect useless reductions using syzygies and linear algebra?
i. Replace each reduction by the difference between its source and its target.

Linear algebra, syzygies and useless reductions

- We consider abstract rewriting systems (V, \longrightarrow) such that V is a vector space and every reduction is labelled.
\triangleright e.g., V is spanned by the letters $\{a, b, c, d, e\}$ submitted to the reductions

i. $\mathbf{A}^{\prime}=e-c, \mathrm{~B}^{\prime}=c-b, \mathrm{C}^{\prime}=e-b, \cdots$
\triangleright The reductions C and F are useless!
- How to detect useless reductions using syzygies and linear algebra?
i. Replace each reduction by the difference between its source and its target.

Linear algebra, syzygies and useless reductions

- We consider abstract rewriting systems (V, \longrightarrow) such that V is a vector space and every reduction is labelled.
\triangleright e.g., V is spanned by the letters $\{a, b, c, d, e\}$ submitted to the reductions

i. $\mathbf{A}^{\prime}=e-c, \mathrm{~B}^{\prime}=c-b, \mathrm{C}^{\prime}=e-b, \cdots$
\triangleright The reductions C and F are useless!
- How to detect useless reductions using syzygies and linear algebra?
i. Replace each reduction by the difference between its source and its target.
ii. Introduce a terminating order on labels.

Linear algebra, syzygies and useless reductions

- We consider abstract rewriting systems (V, \longrightarrow) such that V is a vector space and every reduction is labelled.
\triangleright e.g., V is spanned by the letters $\{a, b, c, d, e\}$ submitted to the reductions

i. $\mathbf{A}^{\prime}=e-c, \mathrm{~B}^{\prime}=c-b, \mathrm{C}^{\prime}=e-b, \cdots$
ii. $\mathbf{A} \sqsubset \mathbf{B} \sqsubset \cdots \sqsubset \mathbf{F}$.
\triangleright The reductions C and F are useless!
- How to detect useless reductions using syzygies and linear algebra?
i. Replace each reduction by the difference between its source and its target.
ii. Introduce a terminating order on labels.

Linear algebra, syzygies and useless reductions

- We consider abstract rewriting systems (V, \longrightarrow) such that V is a vector space and every reduction is labelled.
\triangleright e.g., V is spanned by the letters $\{a, b, c, d, e\}$ submitted to the reductions

i. $\mathbf{A}^{\prime}=e-c, \mathrm{~B}^{\prime}=c-b, \mathrm{C}^{\prime}=e-b, \cdots$
ii. $\mathbf{A} \sqsubset \mathbf{B} \sqsubset \cdots \sqsubset \mathbf{F}$.
\triangleright The reductions C and F are useless!
- How to detect useless reductions using syzygies and linear algebra?
i. Replace each reduction by the difference between its source and its target.
ii. Introduce a terminating order on labels.
iii. Compute a row echelon basis of the syzygies.

Linear algebra, syzygies and useless reductions

- We consider abstract rewriting systems (V, \longrightarrow) such that V is a vector space and every reduction is labelled.
\triangleright e.g., V is spanned by the letters $\{a, b, c, d, e\}$ submitted to the reductions

i. $\mathbf{A}^{\prime}=e-c, \mathbf{B}^{\prime}=c-b, \mathbf{C}^{\prime}=e-b, \cdots$
ii. $A \sqsubset B \sqsubset \cdots \sqsubset F$.
iii. $C^{\prime}-B^{\prime}-A^{\prime}$
\triangleright The reductions C and F are useless!
- How to detect useless reductions using syzygies and linear algebra?
i. Replace each reduction by the difference between its source and its target.
ii. Introduce a terminating order on labels.
iii. Compute a row echelon basis of the syzygies.

Linear algebra, syzygies and useless reductions

- We consider abstract rewriting systems (V, \longrightarrow) such that V is a vector space and every reduction is labelled.
\triangleright e.g., V is spanned by the letters $\{a, b, c, d, e\}$ submitted to the reductions

i. $\mathbf{A}^{\prime}=e-c, \mathbf{B}^{\prime}=c-b, \mathbf{C}^{\prime}=e-b, \cdots$
ii. $A \sqsubset B \sqsubset \cdots \sqsubset F$.
iii. $C^{\prime}-B^{\prime}-A^{\prime}$ and $F^{\prime}-E^{\prime}-D^{\prime}+A^{\prime}$.
\triangleright The reductions C and F are useless!
- How to detect useless reductions using syzygies and linear algebra?
i. Replace each reduction by the difference between its source and its target.
ii. Introduce a terminating order on labels.
iii. Compute a row echelon basis of the syzygies.

Linear algebra, syzygies and useless reductions

- We consider abstract rewriting systems (V, \longrightarrow) such that V is a vector space and every reduction is labelled.
\triangleright e.g., V is spanned by the letters $\{a, b, c, d, e\}$ submitted to the reductions

i. $\mathbf{A}^{\prime}=e-c, \mathrm{~B}^{\prime}=c-b, \mathrm{C}^{\prime}=e-b, \cdots$
ii. $\mathbf{A} \sqsubset B \sqsubset \cdots \subset \mathbf{F}$.
iii. $C^{\prime}-B^{\prime}-A^{\prime}$ and $F^{\prime}-E^{\prime}-D^{\prime}+A^{\prime}$.
\triangleright The reductions C and F are useless!
- How to detect useless reductions using syzygies and linear algebra?
i. Replace each reduction by the difference between its source and its target.
ii. Introduce a terminating order on labels.
iii. Compute a row echelon basis of the syzygies.
iv. Remove the reductions corresponding to leading terms of syzygies.

Linear algebra, syzygies and useless reductions

- We consider abstract rewriting systems (V, \longrightarrow) such that V is a vector space and every reduction is labelled.
\triangleright e.g., V is spanned by the letters $\{a, b, c, d, e\}$ submitted to the reductions

i. $\mathbf{A}^{\prime}=e-c, \mathbf{B}^{\prime}=c-b, \mathbf{C}^{\prime}=e-b, \cdots$
ii. $\mathbf{A} \sqsubset \mathbf{B} \sqsubset \cdots \sqsubset \mathbf{F}$.
iii. $C^{\prime}-B^{\prime}-A^{\prime}$ and $F^{\prime}-E^{\prime}-D^{\prime}+A^{\prime}$.
iv. C and F.
- How to detect useless reductions using syzygies and linear algebra?
i. Replace each reduction by the difference between its source and its target.
ii. Introduce a terminating order on labels.
iii. Compute a row echelon basis of the syzygies.
iv. Remove the reductions corresponding to leading terms of syzygies.

Reduction operators and labelled reductions

- We fix V is a vector space equipped with a well-ordered basis $(G,<)$.

Reduction operators and labelled reductions

- We fix V is a vector space equipped with a well-ordered basis $(G,<)$.

Definition.

\triangleright An endomorphism T of V is a reduction operator if
$\triangleright T$ is a projector,
$\triangleright \forall g \in G$, we have either $T(g)=g$ or $\operatorname{lt}(T(g))<g$.

Reduction operators and labelled reductions

- We fix V is a vector space equipped with a well-ordered basis $(G,<)$.

Definition.

\triangleright An endomorphism T of V is a reduction operator if
$\triangleright T$ is a projector,
$\triangleright \forall g \in G$, we have either $T(g)=g$ or $\operatorname{lt}(T(g))<g$.
\triangleright The set of reduction operators is denoted by $\mathbf{R O}(G,<)$.

Reduction operators and labelled reductions

- We fix V is a vector space equipped with a well-ordered basis $(G,<)$.

Definition.

\triangleright An endomorphism T of V is a reduction operator if
$\triangleright T$ is a projector,
$\triangleright \forall g \in G$, we have either $T(g)=g$ or $\operatorname{lt}(T(g))<g$.
\triangleright The set of reduction operators is denoted by $\mathbf{R O}(G,<)$.

Labelled reductions.

\triangleright A reduction operator T induces the labelled reductions $v \xrightarrow{\ell_{T, v}} T(v)$.

Reduction operators and labelled reductions

- We fix V is a vector space equipped with a well-ordered basis $(G,<)$.

Definition.

\triangleright An endomorphism T of V is a reduction operator if
$\triangleright T$ is a projector,
$\triangleright \forall g \in G$, we have either $T(g)=g$ or $\operatorname{lt}(T(g))<g$.
\triangleright The set of reduction operators is denoted by $\mathbf{R O}(G,<)$.

Labelled reductions.

\triangleright A reduction operator T induces the labelled reductions $v \xrightarrow{\ell_{T, v}} T(v)$.
\triangleright The labels of reductions induced by $F=\left\{T_{1}, \cdots, T_{n}\right\} \subset \mathbf{R O}(G,<)$ are ordered by:

$$
\ell_{T_{i}, u} \sqsubset \ell_{T_{j}, v}:=(i<j) \vee(i=j \wedge \operatorname{lt}(u)<\operatorname{lt}(v)) .
$$

Reduction operators and labelled reductions

- We fix V is a vector space equipped with a well-ordered basis $(G,<)$.

Definition.

\triangleright An endomorphism T of V is a reduction operator if
$\triangleright T$ is a projector,
$\triangleright \forall g \in G$, we have either $T(g)=g$ or $\operatorname{lt}(T(g))<g$.
\triangleright The set of reduction operators is denoted by $\mathbf{R O}(G,<)$.

Labelled reductions.

\triangleright A reduction operator T induces the labelled reductions $v \xrightarrow{\ell_{T, v}} T(v)$.
\triangleright The labels of reductions induced by $F=\left\{T_{1}, \cdots, T_{n}\right\} \subset \mathbf{R O}(G,<)$ are ordered by:

$$
\ell_{T_{i}, u} \sqsubset \ell_{T_{j}, v}:=(i<j) \vee(i=j \wedge \operatorname{lt}(u)<\operatorname{lt}(v)) .
$$

Reduction operators and labelled reductions

- We fix V is a vector space equipped with a well-ordered basis $(G,<)$.

Definition.

\triangleright An endomorphism T of V is a reduction operator if
$\triangleright T$ is a projector,
$\triangleright \forall g \in G$, we have either $T(g)=g$ or $\operatorname{lt}(T(g))<g$.
\triangleright The set of reduction operators is denoted by $\mathbf{R O}(G,<)$.

Labelled reductions.

\triangleright A reduction operator T induces the labelled reductions $v \xrightarrow{\ell_{T, v}} T(v)$.
\triangleright The labels of reductions induced by $F=\left\{T_{1}, \cdots, T_{n}\right\} \subset \mathbf{R O}(G,<)$ are ordered by:

$$
\ell_{T_{i}, u} \sqsubset \ell_{T_{j}, v}:=(i<j) \vee(i=j \wedge \operatorname{lt}(u)<\operatorname{lt}(v)) .
$$

Example

$\checkmark G=\{a<b<c<d<e\}$ and

Example

$\checkmark=\{a<b<c<d<e\}$ and

- We obtain the following order on labels:

Example

$\checkmark=\{a<b<c<d<e\}$ and

- We obtain the following order on labels:

$$
\ell_{\mathbf{T}_{1}, \mathrm{e}}
$$

Example

$\checkmark=\{a<b<c<d<e\}$ and

- We obtain the following order on labels:

$$
\ell_{\boldsymbol{T}_{1}, \mathrm{e}} \sqsubset \ell_{\boldsymbol{T}_{2}, \mathrm{c}}
$$

Example

$\checkmark=\{a<b<c<d<e\}$ and

- We obtain the following order on labels:

$$
\ell_{\mathrm{T}_{1}, \mathrm{e}} \sqsubset \ell_{\mathrm{T}_{2}, \mathrm{c}} \sqsubset \ell_{\mathrm{T}_{2}, \mathrm{e}}
$$

Example

$\checkmark=\{a<b<c<d<e\}$ and

- We obtain the following order on labels:

$$
\ell_{\mathbf{T}_{\mathbf{1}}, \mathrm{e}} \sqsubset \ell_{\boldsymbol{T}_{2}, \mathrm{c}} \sqsubset \ell_{\mathbf{T}_{2}, \mathrm{e}} \sqsubset \ell_{\mathbf{T}_{3}, \mathrm{e}}
$$

Example

$\checkmark=\{a<b<c<d<e\}$ and

- We obtain the following order on labels:

$$
\ell_{\boldsymbol{T}_{1}, \mathrm{e}} \sqsubset \ell_{\mathrm{T}_{2}, \mathrm{c}} \sqsubset \ell_{\mathrm{T}_{2}, \mathrm{e}} \sqsubset \ell_{\mathrm{T}_{3}, \mathrm{e}} \sqsubset \ell_{\mathrm{T}_{4}, \mathrm{~d}}
$$

Example

- $G=\{a<b<c<d<e\}$ and

- We obtain the following order on labels:

$$
\ell_{\mathbf{T}_{\mathbf{1}}, \mathrm{e}} \sqsubset \ell_{\boldsymbol{T}_{2}, \mathrm{c}} \sqsubset \ell_{\mathbf{T}_{2}, \mathrm{e}} \sqsubset \ell_{\mathbf{T}_{3}, \mathrm{e}} \sqsubset \ell_{\boldsymbol{T}_{4}, \mathrm{~d}} \sqsubset \ell_{\mathbf{T}_{5}, \mathrm{~d}} .
$$

Plan

III. Lattice description of syzygies

Definition of syzygies

Syzygies.

\triangleright The space of syzygies of $F=\left\{T_{1}, \cdots, T_{n}\right\} \subset \mathbf{R O}(G,<)$ is the kernel of

$$
\operatorname{ker}\left(T_{1}\right) \times \cdots \times \operatorname{ker}\left(T_{n}\right) \longrightarrow V, \quad\left(v_{1}, \cdots, v_{n}\right) \longmapsto v_{1}+\cdots+v_{n} .
$$

Definition of syzygies

Syzygies.

\triangleright The space of syzygies of $F=\left\{T_{1}, \cdots, T_{n}\right\} \subset \mathbf{R O}(G,<)$ is the kernel of

$$
\operatorname{ker}\left(T_{1}\right) \times \cdots \times \operatorname{ker}\left(T_{n}\right) \longrightarrow V, \quad\left(v_{1}, \cdots, v_{n}\right) \longmapsto v_{1}+\cdots+v_{n}
$$

\triangleright The space of syzygies of F is denoted by syz (F).

Example.

Definition of syzygies

Syzygies.

\triangleright The space of syzygies of $F=\left\{T_{1}, \cdots, T_{n}\right\} \subset \mathbf{R O}(G,<)$ is the kernel of

$$
\operatorname{ker}\left(T_{1}\right) \times \cdots \times \operatorname{ker}\left(T_{n}\right) \longrightarrow V, \quad\left(v_{1}, \cdots, v_{n}\right) \longmapsto v_{1}+\cdots+v_{n}
$$

\triangleright The space of syzygies of F is denoted by syz (F).

Example.

$$
\operatorname{syz}\left(T_{1}, \cdots, T_{5}\right)=\mathbb{K}\left\{s_{1}, s_{2}\right\} \text { where }
$$

Definition of syzygies

Syzygies.

\triangleright The space of syzygies of $F=\left\{T_{1}, \cdots, T_{n}\right\} \subset \mathbf{R O}(G,<)$ is the kernel of

$$
\operatorname{ker}\left(T_{1}\right) \times \cdots \times \operatorname{ker}\left(T_{n}\right) \longrightarrow V, \quad\left(v_{1}, \cdots, v_{n}\right) \longmapsto v_{1}+\cdots+v_{n} .
$$

\triangleright The space of syzygies of F is denoted by syz (F).

Example.

$$
\begin{gathered}
\operatorname{syz}\left(T_{1}, \cdots, T_{5}\right)=\mathbb{K}\left\{s_{1}, s_{2}\right\} \text { where } \\
s_{1}=(-(e-c),(e-b)-(c-b), 0,0,0)
\end{gathered}
$$

Definition of syzygies

Syzygies.

\triangleright The space of syzygies of $F=\left\{T_{1}, \cdots, T_{n}\right\} \subset \mathbf{R O}(G,<)$ is the kernel of

$$
\operatorname{ker}\left(T_{1}\right) \times \cdots \times \operatorname{ker}\left(T_{n}\right) \longrightarrow V, \quad\left(v_{1}, \cdots, v_{n}\right) \longmapsto v_{1}+\cdots+v_{n} .
$$

\triangleright The space of syzygies of F is denoted by syz (F).

Example.

$$
\begin{gathered}
\operatorname{syz}\left(T_{1}, \cdots, T_{5}\right)=\mathbb{K}\left\{s_{1}, s_{2}\right\} \text { where } \\
s_{1}=(-(e-c),(e-b)-(c-b), 0,0,0) \\
s_{2}=(e-c, 0,-(e-a),-(d-c), d-a)
\end{gathered}
$$

Definition of syzygies

Syzygies.

\triangleright The space of syzygies of $F=\left\{T_{1}, \cdots, T_{n}\right\} \subset \mathbf{R O}(G,<)$ is the kernel of

$$
\operatorname{ker}\left(T_{1}\right) \times \cdots \times \operatorname{ker}\left(T_{n}\right) \longrightarrow V, \quad\left(v_{1}, \cdots, v_{n}\right) \longmapsto v_{1}+\cdots+v_{n}
$$

\triangleright The space of syzygies of F is denoted by $\operatorname{syz}(F)$.
Notation. We denote by $u_{i, g}=\left(0, \cdots, 0, g-T_{i}(g), 0, \cdots, 0\right)$.

Example.

$$
\begin{gathered}
\operatorname{syz}\left(T_{1}, \cdots, T_{5}\right)=\mathbb{K}\left\{s_{1}, s_{2}\right\} \text { where } \\
s_{1}=(-(e-c),(e-b)-(c-b), 0,0,0) \\
s_{2}=(e-c, 0,-(e-a),-(d-c), d-a)
\end{gathered}
$$

Definition of syzygies

Syzygies.

\triangleright The space of syzygies of $F=\left\{T_{1}, \cdots, T_{n}\right\} \subset \mathbf{R O}(G,<)$ is the kernel of

$$
\operatorname{ker}\left(T_{1}\right) \times \cdots \times \operatorname{ker}\left(T_{n}\right) \longrightarrow V, \quad\left(v_{1}, \cdots, v_{n}\right) \longmapsto v_{1}+\cdots+v_{n}
$$

\triangleright The space of syzygies of F is denoted by $\operatorname{syz}(F)$.
Notation. We denote by $u_{i, g}=\left(0, \cdots, 0, g-T_{i}(g), 0, \cdots, 0\right)$.

Example.

$$
\begin{aligned}
& \boldsymbol{\operatorname { s y z }}\left(T_{1}, \cdots, T_{5}\right)=\mathbb{K}\left\{s_{1}, s_{2}\right\} \text { where } \\
& s_{1}=(-(e-c),(e-b)-(c-b), 0,0,0) \\
&=u_{2, e} \\
& s_{2}=(e-c, 0,-(e-a),-(d-c), d-a)
\end{aligned}
$$

Definition of syzygies

Syzygies.

\triangleright The space of syzygies of $F=\left\{T_{1}, \cdots, T_{n}\right\} \subset \mathbf{R O}(G,<)$ is the kernel of

$$
\operatorname{ker}\left(T_{1}\right) \times \cdots \times \operatorname{ker}\left(T_{n}\right) \longrightarrow V, \quad\left(v_{1}, \cdots, v_{n}\right) \longmapsto v_{1}+\cdots+v_{n} .
$$

\triangleright The space of syzygies of F is denoted by $\operatorname{syz}(F)$.
Notation. We denote by $u_{i, g}=\left(0, \cdots, 0, g-T_{i}(g), 0, \cdots, 0\right)$.

Example.

$$
\begin{aligned}
& \quad \operatorname{syz}\left(T_{1}, \cdots, T_{5}\right)=\mathbb{K}\left\{s_{1}, s_{2}\right\} \text { where } \\
& s_{1}=(-(e-c),(e-b)-(c-b), 0,0,0) \\
&=u_{2, e}-u_{2, c} \\
& s_{2}=(e-c, 0,-(e-a),-(d-c), d-a)
\end{aligned}
$$

Definition of syzygies

Syzygies.

\triangleright The space of syzygies of $F=\left\{T_{1}, \cdots, T_{n}\right\} \subset \mathbf{R O}(G,<)$ is the kernel of

$$
\operatorname{ker}\left(T_{1}\right) \times \cdots \times \operatorname{ker}\left(T_{n}\right) \longrightarrow V, \quad\left(v_{1}, \cdots, v_{n}\right) \longmapsto v_{1}+\cdots+v_{n} .
$$

\triangleright The space of syzygies of F is denoted by $\operatorname{syz}(F)$.
Notation. We denote by $u_{i, g}=\left(0, \cdots, 0, g-T_{i}(g), 0, \cdots, 0\right)$.

Example.

$$
\begin{aligned}
& \operatorname{syz}\left(T_{1}, \cdots, T_{5}\right)=\mathbb{K}\left\{s_{1}, s_{2}\right\} \text { where } \\
s_{1} & =(-(e-c),(e-b)-(c-b), 0,0,0) \\
& =u_{2, e}-u_{2, c}-u_{1, e} \\
s_{2} & =(e-c, 0,-(e-a),-(d-c), d-a)
\end{aligned}
$$

Definition of syzygies

Syzygies.

\triangleright The space of syzygies of $F=\left\{T_{1}, \cdots, T_{n}\right\} \subset \mathbf{R O}(G,<)$ is the kernel of

$$
\operatorname{ker}\left(T_{1}\right) \times \cdots \times \operatorname{ker}\left(T_{n}\right) \longrightarrow V, \quad\left(v_{1}, \cdots, v_{n}\right) \longmapsto v_{1}+\cdots+v_{n}
$$

\triangleright The space of syzygies of F is denoted by $\operatorname{syz}(F)$.
Notation. We denote by $u_{i, g}=\left(0, \cdots, 0, g-T_{i}(g), 0, \cdots, 0\right)$.

Example.

$$
\begin{aligned}
& \quad \operatorname{syz}\left(T_{1}, \cdots, T_{5}\right)=\mathbb{K}\left\{s_{1}, s_{2}\right\} \text { where } \\
& s_{1}=(-(e-c),(e-b)-(c-b), 0,0,0) \\
& \quad=u_{2, e}-u_{2, c}-u_{1, e} \\
& s_{2}=(e-c, 0,-(e-a),-(d-c), d-a) \\
& \\
& \quad=u_{5, d}-u_{4, d}-u_{3, e}+u_{1, e}
\end{aligned}
$$

Lattice structure on $\mathbf{R O}(G,<)$ and syzygies

Lattice structure on $\mathrm{RO}(G,<)$.
\triangleright The map $\mathbf{R O}(G,<) \longrightarrow \operatorname{Subspaces}(V), T \longmapsto \operatorname{ker}(T)$ is a bijection.

Lattice structure on $\mathbf{R O}(G,<)$ and syzygies

Lattice structure on $\mathbf{R O}(G,<)$.
\triangleright The map $\mathrm{RO}(G,<) \longrightarrow$ Subspaces $(V), T \longmapsto \operatorname{ker}(T)$ is a bijection.
$\triangleright \mathbf{R O}(G,<)$ admits a lattice structure where:
$\triangleright T_{1} \preceq T_{2}$ if $\operatorname{ker}\left(T_{2}\right) \subseteq \operatorname{ker}\left(T_{1}\right)$,
$\triangleright T_{1} \wedge T_{2}:=\operatorname{ker}^{-1}\left(\operatorname{ker}\left(T_{1}\right)+\operatorname{ker}\left(T_{2}\right)\right)$,
$\triangleright T_{1} \vee T_{2}:=\operatorname{ker}^{-1}\left(\operatorname{ker}\left(T_{1}\right) \cap \operatorname{ker}\left(T_{2}\right)\right)$.

Lattice structure on $\mathbf{R O}(G,<)$ and syzygies

Lattice structure on $\mathbf{R O}(G,<)$.
\triangleright The map RO $(G,<) \longrightarrow$ Subspaces $(V), T \longmapsto \operatorname{ker}(T)$ is a bijection.
$\triangleright \mathbf{R O}(G,<)$ admits a lattice structure where:

$$
\begin{aligned}
& \triangleright T_{1} \preceq T_{2} \text { if } \operatorname{ker}\left(T_{2}\right) \subseteq \operatorname{ker}\left(T_{1}\right), \\
& \triangleright T_{1} \wedge T_{2}:=\operatorname{ker}^{-1}\left(\operatorname{ker}\left(T_{1}\right)+\operatorname{ker}\left(T_{2}\right)\right), \\
& \triangleright T_{1} \vee T_{2}:=\operatorname{ker}^{-1}\left(\operatorname{ker}\left(T_{1}\right) \cap \operatorname{ker}\left(T_{2}\right)\right) .
\end{aligned}
$$

Proposition i. Let $P=\left(T, T^{\prime}\right) \subset \mathbf{R O}(G,<)$. We have a linear isomorphism

$$
\operatorname{ker}\left(T \vee T^{\prime}\right) \xrightarrow{\sim} \operatorname{syz}(P)
$$

Lattice structure on $\mathbf{R O}(G,<)$ and syzygies

Lattice structure on $\mathbf{R O}(G,<)$.
\triangleright The map RO $(G,<) \longrightarrow$ Subspaces $(V), T \longmapsto \operatorname{ker}(T)$ is a bijection.
$\triangleright \mathbf{R O}(G,<)$ admits a lattice structure where:

$$
\begin{aligned}
& \triangleright T_{1} \preceq T_{2} \text { if } \operatorname{ker}\left(T_{2}\right) \subseteq \operatorname{ker}\left(T_{1}\right), \\
& \triangleright T_{1} \wedge T_{2}:=\operatorname{ker}^{-1}\left(\operatorname{ker}\left(T_{1}\right)+\operatorname{ker}\left(T_{2}\right)\right), \\
& \triangleright T_{1} \vee T_{2}:=\operatorname{ker}^{-1}\left(\operatorname{ker}\left(T_{1}\right) \cap \operatorname{ker}\left(T_{2}\right)\right) .
\end{aligned}
$$

Proposition i. Let $P=\left(T, T^{\prime}\right) \subset \mathbf{R O}(G,<)$. We have a linear isomorphism

$$
\operatorname{ker}\left(T \vee T^{\prime}\right) \xrightarrow{\sim} \operatorname{syz}(P), v \longmapsto(-v, v) .
$$

Lattice structure on $\mathbf{R O}(G,<)$ and syzygies

Lattice structure on $\mathbf{R O}(G,<)$.
\triangleright The map RO $(G,<) \longrightarrow$ Subspaces $(V), T \longmapsto \operatorname{ker}(T)$ is a bijection.
$\triangleright \mathbf{R O}(G,<)$ admits a lattice structure where:

$$
\begin{aligned}
& \triangleright T_{1} \preceq T_{2} \text { if } \operatorname{ker}\left(T_{2}\right) \subseteq \operatorname{ker}\left(T_{1}\right), \\
& \triangleright T_{1} \wedge T_{2}:=\operatorname{ker}^{-1}\left(\operatorname{ker}\left(T_{1}\right)+\operatorname{ker}\left(T_{2}\right)\right), \\
& \triangleright T_{1} \vee T_{2}:=\operatorname{ker}^{-1}\left(\operatorname{ker}\left(T_{1}\right) \cap \operatorname{ker}\left(T_{2}\right)\right) .
\end{aligned}
$$

Proposition i. Let $P=\left(T, T^{\prime}\right) \subset \mathbf{R O}(G,<)$. We have a linear isomorphism

$$
\operatorname{ker}\left(T \vee T^{\prime}\right) \xrightarrow{\sim} \operatorname{syz}(P)
$$

Proposition ii. Let $F=\left\{T_{1}, \cdots, T_{n}\right\} \subset \mathbf{R O}(G,<)$. For every integer $2 \leq i \leq n$, we have a short exact sequence

$$
0 \longrightarrow \mathbf{s y z}\left(T_{1}, \cdots, \quad T_{i-1}\right) \xrightarrow{\iota_{i}} \boldsymbol{\operatorname { s y z }}\left(T_{1}, \cdots, T_{i}\right) \xrightarrow{\pi_{i}} \boldsymbol{\operatorname { s y z }}\left(T_{1} \wedge \cdots \wedge T_{i-1}, T_{i}\right) \longrightarrow 0
$$

Construction of a basis of $\operatorname{syz}(F)$

- How to construct a basis of syz (F) ?

Construction of a basis of $\operatorname{syz}(F)$

- How to construct a basis of syz (F) ?
\triangleright We have $\operatorname{syz}\left(T_{1}, T_{2}\right) \subseteq \operatorname{syz}\left(T_{1}, T_{2}, T_{3}\right) \subseteq \cdots \subseteq \operatorname{syz}\left(T_{1}, \cdots, T_{n}\right)$.

Construction of a basis of $\operatorname{syz}(F)$

- How to construct a basis of $\operatorname{syz}(F)$?
\triangleright We have $\operatorname{syz}\left(T_{1}, T_{2}\right) \subseteq \operatorname{syz}\left(T_{1}, T_{2}, T_{3}\right) \subseteq \cdots \subseteq \operatorname{syz}\left(T_{1}, \cdots, T_{n}\right)$.
\triangleright Main step: construct a supplement of $\operatorname{syz}\left(T_{1}, \cdots, T_{i-1}\right)$ in $\operatorname{syz}\left(T_{1}, \cdots, T_{i}\right)$.

Construction of a basis of $\operatorname{syz}(F)$

- How to construct a basis of $\operatorname{syz}(F)$?
\triangleright We have $\operatorname{syz}\left(T_{1}, T_{2}\right) \subseteq \operatorname{syz}\left(T_{1}, T_{2}, T_{3}\right) \subseteq \cdots \subseteq \operatorname{syz}\left(T_{1}, \cdots, T_{n}\right)$.
\triangleright Main step: construct a supplement of $\operatorname{syz}\left(T_{1}, \cdots, T_{i-1}\right)$ in $\operatorname{syz}\left(T_{1}, \cdots, T_{i}\right)$.
\triangleright This supplement is constructed using the isomorphism

$$
\operatorname{syz}\left(T_{1} \cdots, T_{i}\right) / \operatorname{syz}\left(T_{1}, \cdots, \quad T_{i-1}\right) \simeq \operatorname{ker}\left(\left(T_{1} \wedge \cdots \wedge T_{i-1}\right) \vee T_{i}\right)
$$

Construction of a basis of $\operatorname{syz}(F)$

- How to construct a basis of $\operatorname{syz}(F)$?
\triangleright We have $\operatorname{syz}\left(T_{1}, T_{2}\right) \subseteq \operatorname{syz}\left(T_{1}, T_{2}, T_{3}\right) \subseteq \cdots \subseteq \operatorname{syz}\left(T_{1}, \cdots, T_{n}\right)$.
\triangleright Main step: construct a supplement of $\operatorname{syz}\left(T_{1}, \cdots, T_{i-1}\right)$ in $\operatorname{syz}\left(T_{1}, \cdots, T_{i}\right)$.
\triangleright This supplement is constructed using the isomorphism

$$
\operatorname{syz}\left(T_{1} \cdots, T_{i}\right) / \operatorname{syz}\left(T_{1}, \cdots, \quad T_{i-1}\right) \simeq \operatorname{ker}\left(\left(T_{1} \wedge \cdots \wedge T_{i-1}\right) \vee T_{i}\right)
$$

Example.

Construction of a basis of $\operatorname{syz}(F)$

- How to construct a basis of $\operatorname{syz}(F)$?
\triangleright We have $\operatorname{syz}\left(T_{1}, T_{2}\right) \subseteq \operatorname{syz}\left(T_{1}, T_{2}, T_{3}\right) \subseteq \cdots \subseteq \operatorname{syz}\left(T_{1}, \cdots, T_{n}\right)$.
\triangleright Main step: construct a supplement of $\operatorname{syz}\left(T_{1}, \cdots, T_{i-1}\right)$ in $\operatorname{syz}\left(T_{1}, \cdots, T_{i}\right)$.
\triangleright This supplement is constructed using the isomorphism

$$
\operatorname{syz}\left(T_{1} \cdots, T_{i}\right) / \operatorname{syz}\left(T_{1}, \cdots, T_{i-1}\right) \simeq \operatorname{ker}\left(\left(T_{1} \wedge \cdots \wedge T_{i-1}\right) \vee T_{i}\right)
$$

Example.

Step 1. We have $\operatorname{ker}\left(T_{1} \vee T_{2}\right)=\mathbb{K}\{e-c\}$.

Construction of a basis of $\operatorname{syz}(F)$

- How to construct a basis of $\operatorname{syz}(F)$?
\triangleright We have $\operatorname{syz}\left(T_{1}, T_{2}\right) \subseteq \operatorname{syz}\left(T_{1}, T_{2}, T_{3}\right) \subseteq \cdots \subseteq \operatorname{syz}\left(T_{1}, \cdots, T_{n}\right)$.
\triangleright Main step: construct a supplement of $\operatorname{syz}\left(T_{1}, \cdots, T_{i-1}\right)$ in $\operatorname{syz}\left(T_{1}, \cdots, T_{i}\right)$.
\triangleright This supplement is constructed using the isomorphism

$$
\operatorname{syz}\left(T_{1} \cdots, T_{i}\right) / \operatorname{syz}\left(T_{1}, \cdots, T_{i-1}\right) \simeq \operatorname{ker}\left(\left(T_{1} \wedge \cdots \wedge T_{i-1}\right) \vee T_{i}\right)
$$

Example.

Step 1. We have $\operatorname{ker}\left(T_{1} \vee T_{2}\right)=\mathbb{K}\{e-c\}$. $\triangleright e-c=e-T_{1}(e)$.

Construction of a basis of $\operatorname{syz}(F)$

- How to construct a basis of $\operatorname{syz}(F)$?
\triangleright We have $\operatorname{syz}\left(T_{1}, T_{2}\right) \subseteq \operatorname{syz}\left(T_{1}, T_{2}, T_{3}\right) \subseteq \cdots \subseteq \operatorname{syz}\left(T_{1}, \cdots, T_{n}\right)$.
\triangleright Main step: construct a supplement of $\operatorname{syz}\left(T_{1}, \cdots, T_{i-1}\right)$ in $\operatorname{syz}\left(T_{1}, \cdots, T_{i}\right)$.
\triangleright This supplement is constructed using the isomorphism

$$
\operatorname{syz}\left(T_{1} \cdots, T_{i}\right) / \operatorname{syz}\left(T_{1}, \cdots, \quad T_{i-1}\right) \simeq \operatorname{ker}\left(\left(T_{1} \wedge \cdots \wedge T_{i-1}\right) \vee T_{i}\right)
$$

Example.

Step 1. We have $\operatorname{ker}\left(T_{1} \vee T_{2}\right)=\mathbb{K}\{e-c\}$.

$$
\triangleright e-c=e-T_{1}(e) .
$$

$$
\triangleright e-c=\left(e-T_{2}(e)\right)-\left(c-T_{2}(c)\right) .
$$

Construction of a basis of $\operatorname{syz}(F)$

- How to construct a basis of $\operatorname{syz}(F)$?
\triangleright We have $\operatorname{syz}\left(T_{1}, T_{2}\right) \subseteq \operatorname{syz}\left(T_{1}, T_{2}, T_{3}\right) \subseteq \cdots \subseteq \operatorname{syz}\left(T_{1}, \cdots, T_{n}\right)$.
\triangleright Main step: construct a supplement of $\operatorname{syz}\left(T_{1}, \cdots, T_{i-1}\right)$ in $\operatorname{syz}\left(T_{1}, \cdots, T_{i}\right)$.
\triangleright This supplement is constructed using the isomorphism

$$
\operatorname{syz}\left(T_{1} \cdots, T_{i}\right) / \operatorname{syz}\left(T_{1}, \cdots, \quad T_{i-1}\right) \simeq \operatorname{ker}\left(\left(T_{1} \wedge \cdots \wedge T_{i-1}\right) \vee T_{i}\right)
$$

Example.

Step 1. We have $\operatorname{ker}\left(T_{1} \vee T_{2}\right)=\mathbb{K}\{e-c\}$. $\triangleright e-c=e-T_{1}(e)$.
$\triangleright e-c=\left(e-T_{2}(e)\right)-\left(c-T_{2}(c)\right)$.
\triangleright We get the first basis element:

$$
s_{1}=u_{2, e}
$$

Construction of a basis of $\operatorname{syz}(F)$

- How to construct a basis of $\operatorname{syz}(F)$?
\triangleright We have $\operatorname{syz}\left(T_{1}, T_{2}\right) \subseteq \operatorname{syz}\left(T_{1}, T_{2}, T_{3}\right) \subseteq \cdots \subseteq \operatorname{syz}\left(T_{1}, \cdots, T_{n}\right)$.
\triangleright Main step: construct a supplement of $\operatorname{syz}\left(T_{1}, \cdots, T_{i-1}\right)$ in $\operatorname{syz}\left(T_{1}, \cdots, T_{i}\right)$.
\triangleright This supplement is constructed using the isomorphism

$$
\operatorname{syz}\left(T_{1} \cdots, T_{i}\right) / \operatorname{syz}\left(T_{1}, \cdots, \quad T_{i-1}\right) \simeq \operatorname{ker}\left(\left(T_{1} \wedge \cdots \wedge T_{i-1}\right) \vee T_{i}\right)
$$

Example.

Step 1. We have $\operatorname{ker}\left(T_{1} \vee T_{2}\right)=\mathbb{K}\{e-c\}$. $\triangleright e-c=e-T_{1}(e)$.
$\triangleright e-c=\left(e-T_{2}(e)\right)-\left(c-T_{2}(c)\right)$.
\triangleright We get the first basis element:

$$
s_{1}=u_{2, e}-u_{2, c}
$$

Construction of a basis of $\operatorname{syz}(F)$

- How to construct a basis of $\operatorname{syz}(F)$?
\triangleright We have $\operatorname{syz}\left(T_{1}, T_{2}\right) \subseteq \operatorname{syz}\left(T_{1}, T_{2}, T_{3}\right) \subseteq \cdots \subseteq \operatorname{syz}\left(T_{1}, \cdots, T_{n}\right)$.
\triangleright Main step: construct a supplement of $\operatorname{syz}\left(T_{1}, \cdots, T_{i-1}\right)$ in $\operatorname{syz}\left(T_{1}, \cdots, T_{i}\right)$.
\triangleright This supplement is constructed using the isomorphism

$$
\operatorname{syz}\left(T_{1} \cdots, T_{i}\right) / \operatorname{syz}\left(T_{1}, \cdots, \quad T_{i-1}\right) \simeq \operatorname{ker}\left(\left(T_{1} \wedge \cdots \wedge T_{i-1}\right) \vee T_{i}\right)
$$

Example.

Step 1. We have $\operatorname{ker}\left(T_{1} \vee T_{2}\right)=\mathbb{K}\{e-c\}$.

$$
\triangleright e-c=e-T_{1}(e) .
$$

$$
\triangleright e-c=\left(e-T_{2}(e)\right)-\left(c-T_{2}(c)\right) .
$$

\triangleright We get the first basis element:

$$
s_{1}=u_{2, e}-u_{2, c}-u_{1, c}
$$

Construction of a basis of $\operatorname{syz}(F)$

- How to construct a basis of $\operatorname{syz}(F)$?
\triangleright We have $\operatorname{syz}\left(T_{1}, T_{2}\right) \subseteq \operatorname{syz}\left(T_{1}, T_{2}, T_{3}\right) \subseteq \cdots \subseteq \operatorname{syz}\left(T_{1}, \cdots, T_{n}\right)$.
\triangleright Main step: construct a supplement of $\operatorname{syz}\left(T_{1}, \cdots, T_{i-1}\right)$ in $\operatorname{syz}\left(T_{1}, \cdots, T_{i}\right)$.
\triangleright This supplement is constructed using the isomorphism

$$
\operatorname{syz}\left(T_{1} \cdots, T_{i}\right) / \operatorname{syz}\left(T_{1}, \cdots, \quad T_{i-1}\right) \simeq \operatorname{ker}\left(\left(T_{1} \wedge \cdots \wedge T_{i-1}\right) \vee T_{i}\right)
$$

Example.

Step 2. We have $\operatorname{ker}\left(\left(T_{1} \wedge T_{2}\right) \vee T_{3}\right)=\{0\}$.

Construction of a basis of $\operatorname{syz}(F)$

- How to construct a basis of $\operatorname{syz}(F)$?
\triangleright We have $\operatorname{syz}\left(T_{1}, T_{2}\right) \subseteq \operatorname{syz}\left(T_{1}, T_{2}, T_{3}\right) \subseteq \cdots \subseteq \operatorname{syz}\left(T_{1}, \cdots, T_{n}\right)$.
\triangleright Main step: construct a supplement of $\operatorname{syz}\left(T_{1}, \cdots, T_{i-1}\right)$ in $\operatorname{syz}\left(T_{1}, \cdots, T_{i}\right)$.
\triangleright This supplement is constructed using the isomorphism

$$
\operatorname{syz}\left(T_{1} \cdots, T_{i}\right) / \operatorname{syz}\left(T_{1}, \cdots, \quad T_{i-1}\right) \simeq \operatorname{ker}\left(\left(T_{1} \wedge \cdots \wedge T_{i-1}\right) \vee T_{i}\right)
$$

Example.

Step 2. We have $\operatorname{ker}\left(\left(T_{1} \wedge T_{2}\right) \vee T_{3}\right)=\{0\}$.
\triangleright No new basis element!

Construction of a basis of $\operatorname{syz}(F)$

- How to construct a basis of $\operatorname{syz}(F)$?
\triangleright We have $\operatorname{syz}\left(T_{1}, T_{2}\right) \subseteq \operatorname{syz}\left(T_{1}, T_{2}, T_{3}\right) \subseteq \cdots \subseteq \operatorname{syz}\left(T_{1}, \cdots, T_{n}\right)$.
\triangleright Main step: construct a supplement of $\operatorname{syz}\left(T_{1}, \cdots, T_{i-1}\right)$ in $\operatorname{syz}\left(T_{1}, \cdots, T_{i}\right)$.
\triangleright This supplement is constructed using the isomorphism

$$
\operatorname{syz}\left(T_{1} \cdots, T_{i}\right) / \operatorname{syz}\left(T_{1}, \cdots, T_{i-1}\right) \simeq \operatorname{ker}\left(\left(T_{1} \wedge \cdots \wedge T_{i-1}\right) \vee T_{i}\right)
$$

Example.

Step 3. $\operatorname{ker}\left(\left(T_{1} \wedge T_{2} \wedge T_{3}\right) \vee T_{4}\right)=\{0\}$.
\triangleright No new basis element!

Construction of a basis of $\operatorname{syz}(F)$

- How to construct a basis of $\operatorname{syz}(F)$?
\triangleright We have $\operatorname{syz}\left(T_{1}, T_{2}\right) \subseteq \operatorname{syz}\left(T_{1}, T_{2}, T_{3}\right) \subseteq \cdots \subseteq \operatorname{syz}\left(T_{1}, \cdots, T_{n}\right)$.
\triangleright Main step: construct a supplement of $\operatorname{syz}\left(T_{1}, \cdots, T_{i-1}\right)$ in $\operatorname{syz}\left(T_{1}, \cdots, T_{i}\right)$.
\triangleright This supplement is constructed using the isomorphism

$$
\operatorname{syz}\left(T_{1} \cdots, T_{i}\right) / \operatorname{syz}\left(T_{1}, \cdots, \quad T_{i-1}\right) \simeq \operatorname{ker}\left(\left(T_{1} \wedge \cdots \wedge T_{i-1}\right) \vee T_{i}\right)
$$

Example.

Step 4. We have

$$
\operatorname{ker}\left(\left(T_{1} \wedge T_{2} \wedge T_{3} \wedge T_{4}\right) \vee T_{5}\right)=\mathbb{K}\{d-a\}
$$

$\triangleright d-a=\left(d-T_{4}(d)\right)+\left(e-T_{3}(e)\right)-\left(e-T_{1}(e)\right)$.
$\triangleright d-a=d-T_{5}(d)$.
\triangleright We get the second basis element:

$$
s_{2}=u_{5, d}-u_{4, d}-u_{3, e}+u_{1, e}
$$

A lattice criterion for rejecting useless reductions

The criterion. Let $F=\left\{T_{1}, \cdots, T_{n}\right\} \subset \mathbf{R O}(G,<)$.

A lattice criterion for rejecting useless reductions

The criterion. Let $F=\left\{T_{1}, \cdots, T_{n}\right\} \subset \mathbf{R O}(G,<)$.
\triangleright The useless reductions are labelled by leading terms of syzygies.

A lattice criterion for rejecting useless reductions

The criterion. Let $F=\left\{T_{1}, \cdots, T_{n}\right\} \subset \mathbf{R O}(G,<)$.
\triangleright The useless reductions are labelled by leading terms of syzygies.
\triangleright These labels are $\ell_{T_{i}, g}$, where $g \notin \operatorname{im}\left(\left(T_{1} \wedge \cdots \wedge T_{i-1}\right) \vee T_{i}\right)$.

Example.

A lattice criterion for rejecting useless reductions

The criterion. Let $F=\left\{T_{1}, \cdots, T_{n}\right\} \subset \mathbf{R O}(G,<)$.
\triangleright The useless reductions are labelled by leading terms of syzygies.
\triangleright These labels are $\ell_{T_{i}, g}$, where $g \notin \operatorname{im}\left(\left(T_{1} \wedge \cdots \wedge T_{i-1}\right) \vee T_{i}\right)$.

Example.

A lattice criterion for rejecting useless reductions

The criterion. Let $F=\left\{T_{1}, \cdots, T_{n}\right\} \subset \mathbf{R O}(G,<)$.
\triangleright The useless reductions are labelled by leading terms of syzygies.
\triangleright These labels are $\ell_{T_{i}, g}$, where $g \notin \operatorname{im}\left(\left(T_{1} \wedge \cdots \wedge T_{i-1}\right) \vee T_{i}\right)$.

Example.

We have:

$$
\triangleright \operatorname{ker}\left(T_{1} \vee T_{2}\right)=\mathbb{K}\{e-c\}
$$

A lattice criterion for rejecting useless reductions

The criterion. Let $F=\left\{T_{1}, \cdots, T_{n}\right\} \subset \mathbf{R O}(G,<)$.
\triangleright The useless reductions are labelled by leading terms of syzygies.
\triangleright These labels are $\ell_{T_{i}, g}$, where $g \notin \operatorname{im}\left(\left(T_{1} \wedge \cdots \wedge T_{i-1}\right) \vee T_{i}\right)$.

Example.

We have:

$$
\begin{gathered}
\triangleright \operatorname{ker}\left(T_{1} \vee T_{2}\right)=\mathbb{K}\{e-c\} . \\
\triangleright T_{1} \vee T_{2}(e)=c .
\end{gathered}
$$

A lattice criterion for rejecting useless reductions

The criterion. Let $F=\left\{T_{1}, \cdots, T_{n}\right\} \subset \mathbf{R O}(G,<)$.
\triangleright The useless reductions are labelled by leading terms of syzygies.
\triangleright These labels are $\ell_{T_{i}, g}$, where $g \notin \operatorname{im}\left(\left(T_{1} \wedge \cdots \wedge T_{i-1}\right) \vee T_{i}\right)$.

Example.

We have:

$$
\begin{aligned}
& \triangleright \operatorname{ker}\left(T_{1} \vee T_{2}\right)=\mathbb{K}\{e-c\} . \\
& \triangleright T_{1} \vee T_{2}(e)=c .
\end{aligned}
$$

\triangleright The labelled reduction $\ell_{T_{2}, \mathrm{e}}$ is useless.

A lattice criterion for rejecting useless reductions

The criterion. Let $F=\left\{T_{1}, \cdots, T_{n}\right\} \subset \mathbf{R O}(G,<)$.
\triangleright The useless reductions are labelled by leading terms of syzygies.
\triangleright These labels are $\ell_{T_{i}, g}$, where $g \notin \operatorname{im}\left(\left(T_{1} \wedge \cdots \wedge T_{i-1}\right) \vee T_{i}\right)$.

Example.

We have:
$\triangleright \operatorname{ker}\left(T_{1} \vee T_{2}\right)=\mathbb{K}\{e-c\}$.
$\triangleright T_{1} \vee T_{2}(e)=c$.
\triangleright The labelled reduction $\ell_{\mathrm{T}_{2}, \mathrm{e}}$ is useless.
$\triangleright \operatorname{ker}\left(\left(T_{1} \wedge T_{2} \wedge T_{3} \wedge T_{4}\right) \vee T_{5}\right)=\mathbb{K}\{d-a\}$.
\triangleright The labelled reduction $\ell_{T_{5}, \mathrm{~d}}$ is useless.

A lattice criterion for rejecting useless reductions

The criterion. Let $F=\left\{T_{1}, \cdots, T_{n}\right\} \subset \mathbf{R O}(G,<)$.
\triangleright The useless reductions are labelled by leading terms of syzygies.
\triangleright These labels are $\ell_{T_{i}, g}$, where $g \notin \operatorname{im}\left(\left(T_{1} \wedge \cdots \wedge T_{i-1}\right) \vee T_{i}\right)$.

Example.

We have:
$\triangleright \operatorname{ker}\left(T_{1} \vee T_{2}\right)=\mathbb{K}\{e-c\}$.
$\triangleright T_{1} \vee T_{2}(e)=c$.
\triangleright The labelled reduction $\ell_{\mathrm{T}_{2}, \mathrm{e}}$ is useless.
$\triangleright \operatorname{ker}\left(\left(T_{1} \wedge T_{2} \wedge T_{3} \wedge T_{4}\right) \vee T_{5}\right)=\mathbb{K}\{d-a\}$.
\triangleright The labelled reduction $\ell_{T_{5}, \mathrm{~d}}$ is useless.

THANK YOU FOR YOUR ATTENTION!

