Syzygies among reduction operators

Cyrille Chenavier

INRIA Lille - Nord Europe

Équipe GAIA

October 2, 2018

Plan

I. Motivations

- Various notions of syzygy
- Computation of syzygies

II. Reduction operators

- Linear algebra, syzygies and useless reductions
- Reduction operators and labelled reductions

III. Lattice description of syzygies

- Lattice structure of reduction operators
- Construction of a basis of syzygies
- ▶ A lattice criterion for rejecting useless reductions

Plan

I. Motivations

- ► Consider the following questions:
 - > Standardisation problems: given two vertices in an abstract rewriting system

- ► Consider the following questions:
 - ▶ Standardisation problems: given two vertices in an abstract rewriting system

- Consider the following questions:
 - > Standardisation problems: given two vertices in an abstract rewriting system

 \triangleright Construction of free resolutions: given an augmented algebra $\mathbf{A}\langle X\mid R\rangle$ and

$$\mathbf{A}[R] \stackrel{d}{\longrightarrow} \mathbf{A}[X] \stackrel{d}{\longrightarrow} \mathbf{A} \stackrel{\varepsilon}{\longrightarrow} \mathbb{K} \longrightarrow 0,$$

- Consider the following questions:
 - > Standardisation problems: given two vertices in an abstract rewriting system

ightharpoonup Construction of free resolutions: given an augmented algebra ${f A}$ $\langle X \mid R \rangle$ and

$$\mathbf{A}[S] \stackrel{d}{\longrightarrow} \mathbf{A}[R] \stackrel{d}{\longrightarrow} \mathbf{A}[X] \stackrel{d}{\longrightarrow} \mathbf{A} \stackrel{\varepsilon}{\longrightarrow} \mathbb{K} \longrightarrow 0,$$

how to extend the beginning of a resolution of the ground field?

Various notions of syzygy

- Consider the following questions:
 - > Standardisation problems: given two vertices in an abstract rewriting system

how to choose a "standard" path between them?

ightharpoonup Construction of free resolutions: given an augmented algebra ${f A}\,\langle X\mid R\rangle$ and

$$\mathbf{A}[S] \stackrel{d}{\longrightarrow} \mathbf{A}[R] \stackrel{d}{\longrightarrow} \mathbf{A}[X] \stackrel{d}{\longrightarrow} \mathbf{A} \stackrel{\varepsilon}{\longrightarrow} \mathbb{K} \longrightarrow 0,$$

how to extend the beginning of a resolution of the ground field?

Detecting useless critical pairs: how to obtain a criterion for rejecting useless critical pairs during the completion procedure?

- Consider the following questions:
 - > Standardisation problems: given two vertices in an abstract rewriting system

ightharpoonup Construction of free resolutions: given an augmented algebra ${f A}\,\langle X\mid R\rangle$ and

$$\mathbf{A}[S] \stackrel{d}{\longrightarrow} \mathbf{A}[R] \stackrel{d}{\longrightarrow} \mathbf{A}[X] \stackrel{d}{\longrightarrow} \mathbf{A} \stackrel{\varepsilon}{\longrightarrow} \mathbb{K} \longrightarrow 0,$$

how to extend the beginning of a resolution of the ground field?

- Detecting useless critical pairs: how to obtain a criterion for rejecting useless critical pairs during the completion procedure?
- A method for studying these problems:
 - ▷ compute a generating set for the associated notion of syzygy

- ► Consider the following questions:
 - Standardisation problems: given two vertices in an abstract rewriting system

ightharpoonup Construction of free resolutions: given an augmented algebra ${f A}\,\langle X\mid R\rangle$ and

$$\mathbf{A}[S] \stackrel{d}{\longrightarrow} \mathbf{A}[R] \stackrel{d}{\longrightarrow} \mathbf{A}[X] \stackrel{d}{\longrightarrow} \mathbf{A} \stackrel{\varepsilon}{\longrightarrow} \mathbb{K} \longrightarrow 0,$$

how to extend the beginning of a resolution of the ground field?

- Detecting useless critical pairs: how to obtain a criterion for rejecting useless critical pairs during the completion procedure?
- A method for studying these problems:
 - ▶ compute a generating set for the associated notion of syzygy (two-dimensional cell

- Consider the following questions:
 - Standardisation problems: given two vertices in an abstract rewriting system

Construction of free resolutions: given an augmented algebra $\mathbf{A} \langle X \mid R \rangle$ and

$$\mathbf{A}[S] \stackrel{d}{\longrightarrow} \mathbf{A}[R] \stackrel{d}{\longrightarrow} \mathbf{A}[X] \stackrel{d}{\longrightarrow} \mathbf{A} \stackrel{\varepsilon}{\longrightarrow} \mathbb{K} \longrightarrow 0,$$

how to extend the beginning of a resolution of the ground field?

- Detecting useless critical pairs: how to obtain a criterion for rejecting useless critical pairs during the completion procedure?
- A method for studying these problems:
 - > compute a generating set for the associated notion of syzygy (two-dimensional cell, homological syzygy

Lattice description of syzygies

- Consider the following questions:
 - Standardisation problems: given two vertices in an abstract rewriting system

ightharpoonup Construction of free resolutions: given an augmented algebra ${f A} \, \langle X \mid R \rangle$ and

$$\mathbf{A}[S] \stackrel{d}{\longrightarrow} \mathbf{A}[R] \stackrel{d}{\longrightarrow} \mathbf{A}[X] \stackrel{d}{\longrightarrow} \mathbf{A} \stackrel{\varepsilon}{\longrightarrow} \mathbb{K} \longrightarrow 0,$$

how to extend the beginning of a resolution of the ground field?

- Detecting useless critical pairs: how to obtain a criterion for rejecting useless critical pairs during the completion procedure?
- A method for studying these problems:
 - compute a generating set for the associated notion of syzygy (two-dimensional cell, homological syzygy, identity among relations

- Consider the following questions:
 - Standardisation problems: given two vertices in an abstract rewriting system

ightharpoonup Construction of free resolutions: given an augmented algebra ${f A}\,\langle X\mid R\rangle$ and

$$\mathbf{A}[S] \stackrel{d}{\longrightarrow} \mathbf{A}[R] \stackrel{d}{\longrightarrow} \mathbf{A}[X] \stackrel{d}{\longrightarrow} \mathbf{A} \stackrel{\varepsilon}{\longrightarrow} \mathbb{K} \longrightarrow 0,$$

how to extend the beginning of a resolution of the ground field?

- Detecting useless critical pairs: how to obtain a criterion for rejecting useless critical pairs during the completion procedure?
- A method for studying these problems:
 - ightharpoonup compute a generating set for the associated notion of syzygy (two-dimensional cell, homological syzygy, identity among relations, \cdots).

▶ Consider an algebra **A** presented by $\langle X \mid R \rangle$.

- ▶ Consider an algebra **A** presented by $\langle X \mid R \rangle$.
 - ightharpoonup Question: how are the syzygies of $\langle X \mid R \rangle$ generated?

- ▶ Consider an algebra **A** presented by $\langle X \mid R \rangle$.
- \triangleright Question: how are the syzygies of $\langle X \mid R \rangle$ generated?
- ▶ If **A** is quadratic, a candidate is the **Koszul dual A**! $\langle X^* \mid R^{\perp} \rangle$.

- ▶ Consider an algebra **A** presented by $\langle X \mid R \rangle$.
- \triangleright Question: how are the syzygies of $\langle X \mid R \rangle$ generated?
- ▶ If **A** is quadratic, a candidate is the Koszul dual $\mathbf{A}^! \langle X^* \mid R^\perp \rangle$.
- Methods from rewriting theory

- ▶ Consider an algebra **A** presented by $\langle X \mid R \rangle$.
- \triangleright Question: how are the syzygies of $\langle X \mid R \rangle$ generated?
- ▶ If **A** is quadratic, a candidate is the Koszul dual $\mathbf{A}^! \langle X^* \mid R^\perp \rangle$.
- Methods from rewriting theory:
 - \triangleright If R is a **Gröbner basis**, the syzygies are spanned by **critical pairs** of R.

- ▶ Consider an algebra **A** presented by $\langle X \mid R \rangle$.
- \triangleright Question: how are the syzygies of $\langle X \mid R \rangle$ generated?
- ▶ If **A** is quadratic, a candidate is the Koszul dual $\mathbf{A}^! \langle X^* \mid R^\perp \rangle$.
- Methods from rewriting theory:
 - \triangleright If R is a Gröbner basis, the syzygies are spanned by critical pairs of R.
 - ▶ If *R* is a not a Gröbner basis, apply the **completion-reduction** procedure

- ► Consider an algebra **A** presented by $\langle X \mid R \rangle$.
 - \triangleright Question: how are the syzygies of $\langle X \mid R \rangle$ generated?
- ▶ If **A** is quadratic, a candidate is the Koszul dual $\mathbf{A}^{!} \langle X^* | R^{\perp} \rangle$.
- Methods from rewriting theory:
 - \triangleright If R is a Gröbner basis, the syzygies are spanned by critical pairs of R.
 - ▶ If *R* is a not a Gröbner basis, apply the **completion-reduction** procedure:
 - \triangleright Complete R into a Gröbner basis \overline{R} .

- ▶ Consider an algebra **A** presented by $\langle X \mid R \rangle$.
 - \triangleright Question: how are the syzygies of $\langle X \mid R \rangle$ generated?
- ▶ If **A** is quadratic, a candidate is the Koszul dual $\mathbf{A}^! \langle X^* \mid R^\perp \rangle$.
- Methods from rewriting theory:
 - \triangleright If R is a Gröbner basis, the syzygies are spanned by critical pairs of R.
 - \triangleright If R is a not a Gröbner basis, apply the **completion-reduction** procedure:
 - ightharpoonup Complete R into a Gröbner basis \overline{R} .
 - ▶ Let \overline{S} be the set of critical pairs of \overline{R} .

- ► Consider an algebra **A** presented by $\langle X \mid R \rangle$.
 - \triangleright Question: how are the syzygies of $\langle X \mid R \rangle$ generated?
- ▶ If **A** is quadratic, a candidate is the Koszul dual $\mathbf{A}^{!} \langle X^* | R^{\perp} \rangle$.
- Methods from rewriting theory:
 - \triangleright If R is a Gröbner basis, the syzygies are spanned by critical pairs of R.
 - \triangleright If R is a not a Gröbner basis, apply the completion-reduction procedure:
 - \triangleright Complete R into a Gröbner basis \overline{R} .
 - ▶ Let \overline{S} be the set of critical pairs of \overline{R} .
 - \triangleright Reduce \overline{S} and \overline{R} (algebraic Morse theory, homotopical reduction, \cdots).

- ▶ Consider an algebra **A** presented by $\langle X \mid R \rangle$.
 - \triangleright Question: how are the syzygies of $\langle X \mid R \rangle$ generated?
- ▶ If **A** is quadratic, a candidate is the Koszul dual $\mathbf{A}^! \langle X^* \mid R^\perp \rangle$.
- Methods from rewriting theory:
 - \triangleright If R is a Gröbner basis, the syzygies are spanned by critical pairs of R.
 - ▶ If *R* is a not a Gröbner basis, apply the completion-reduction procedure:
 - \triangleright Complete R into a Gröbner basis \overline{R} .
 - ▶ Let \overline{S} be the set of critical pairs of \overline{R} .
 - \triangleright Reduce \overline{S} and \overline{R} (algebraic Morse theory, homotopical reduction, \cdots).
- Our goals:

- ▶ Consider an algebra **A** presented by $\langle X \mid R \rangle$.
 - \triangleright Question: how are the syzygies of $\langle X \mid R \rangle$ generated?
- ▶ If **A** is quadratic, a candidate is the Koszul dual $\mathbf{A}^! \langle X^* \mid R^{\perp} \rangle$.
- Methods from rewriting theory:
 - \triangleright If R is a Gröbner basis, the syzygies are spanned by critical pairs of R.
 - ▶ If *R* is a not a Gröbner basis, apply the completion-reduction procedure:
 - \triangleright Complete R into a Gröbner basis \overline{R} .
 - \triangleright Let \overline{S} be the set of critical pairs of \overline{R} .
 - \triangleright Reduce \overline{S} and \overline{R} (algebraic Morse theory, homotopical reduction, \cdots).
- Our goals:
 - Compute syzygies of abstract rewriting systems using the lattice structure of reduction operators.

- ▶ Consider an algebra **A** presented by $\langle X \mid R \rangle$.
 - \triangleright Question: how are the syzygies of $\langle X \mid R \rangle$ generated?
- ▶ If **A** is quadratic, a candidate is the Koszul dual $\mathbf{A}^{!} \langle X^* | R^{\perp} \rangle$.
- Methods from rewriting theory:
 - \triangleright If R is a Gröbner basis, the syzygies are spanned by critical pairs of R.
 - ightharpoonup If R is a not a Gröbner basis, apply the completion-reduction procedure:
 - \triangleright Complete R into a Gröbner basis \overline{R} .
 - ▶ Let \overline{S} be the set of critical pairs of \overline{R} .
 - \triangleright Reduce \overline{S} and \overline{R} (algebraic Morse theory, homotopical reduction, \cdots).
- Our goals:
 - Compute syzygies of abstract rewriting systems using the lattice structure of reduction operators.
 - Deduce a lattice criterion for rejecting useless reductions during the completion procedure.

II. Reduction operators

 $lackbox{We consider abstract rewriting systems } (V, \longrightarrow) \text{ such that } V \text{ is a vector space and every reduction is labelled.}$

- We consider abstract rewriting systems (V, \longrightarrow) such that V is a vector space and every reduction is labelled.
 - ightharpoonup e.g., V is spanned by the letters $\{a,\ b,\ c,\ d,\ e\}$ submitted to the reductions

- We consider abstract rewriting systems (V, \longrightarrow) such that V is a vector space and every reduction is labelled.
 - ightharpoonup e.g., V is spanned by the letters $\{a,\ b,\ c,\ d,\ e\}$ submitted to the reductions

- We consider abstract rewriting systems (V, \longrightarrow) such that V is a vector space and every reduction is labelled.
 - ightharpoonup e.g., V is spanned by the letters $\{a,\ b,\ c,\ d,\ e\}$ submitted to the reductions

- $lackbox{We consider abstract rewriting systems } (V, \longrightarrow) \text{ such that } V \text{ is a vector space and every reduction is labelled.}$
 - ightharpoonup e.g., V is spanned by the letters $\{a,\ b,\ c,\ d,\ e\}$ submitted to the reductions

- We consider abstract rewriting systems (V, \longrightarrow) such that V is a vector space and every reduction is labelled.
 - ightharpoonup e.g., V is spanned by the letters $\{a,\ b,\ c,\ d,\ e\}$ submitted to the reductions

- We consider abstract rewriting systems (V, \longrightarrow) such that V is a vector space and every reduction is labelled.
 - ightharpoonup e.g., V is spanned by the letters $\{a,\ b,\ c,\ d,\ e\}$ submitted to the reductions

- ▶ The reductions C and F are useless!
- ▶ How to detect useless reductions using syzygies and linear algebra?

- We consider abstract rewriting systems (V, \longrightarrow) such that V is a vector space and every reduction is labelled.
 - \triangleright e.g., V is spanned by the letters $\{a, b, c, d, e\}$ submitted to the reductions

- ▶ The reductions C and F are useless!
- ▶ How to detect useless reductions using syzygies and linear algebra?
 - i. Replace each reduction by the difference between its source and its target.

- ightharpoonup We consider abstract rewriting systems (V, \longrightarrow) such that V is a vector space and every reduction is labelled.
 - \triangleright e.g., V is spanned by the letters $\{a, b, c, d, e\}$ submitted to the reductions

i. A' = e - e

- ▶ The reductions C and F are useless!
- ▶ How to detect useless reductions using syzygies and linear algebra?
 - i. Replace each reduction by the difference between its source and its target.

- We consider abstract rewriting systems (V, \longrightarrow) such that V is a vector space and every reduction is labelled.
 - \triangleright e.g., V is spanned by the letters $\{a, b, c, d, e\}$ submitted to the reductions

i. A' = e - c, B' = c - b

- ▶ The reductions C and F are useless!
- ▶ How to detect useless reductions using syzygies and linear algebra?
 - i. Replace each reduction by the difference between its source and its target.

- We consider abstract rewriting systems (V, \longrightarrow) such that V is a vector space and every reduction is labelled.
 - \triangleright e.g., V is spanned by the letters $\{a, b, c, d, e\}$ submitted to the reductions

i. A' = e - c, B' = c - b, C' = e - b

- ▶ The reductions C and F are useless!
- ▶ How to detect useless reductions using syzygies and linear algebra?
 - i. Replace each reduction by the difference between its source and its target.

- ▶ We consider abstract rewriting systems (V, \longrightarrow) such that V is a vector space and every reduction is labelled.
 - \triangleright e.g., V is spanned by the letters $\{a, b, c, d, e\}$ submitted to the reductions

i. A' = e - c, B' = c - b, C' = e - b, ...

- ▶ The reductions C and F are useless!
- ▶ How to detect useless reductions using syzygies and linear algebra?
 - i. Replace each reduction by the difference between its source and its target.

- ▶ We consider abstract rewriting systems (V, \longrightarrow) such that V is a vector space and every reduction is labelled.
 - ightharpoonup e.g., V is spanned by the letters $\{a,\ b,\ c,\ d,\ e\}$ submitted to the reductions

i. A' = e - c, B' = c - b, C' = e - b, ...

- ▶ The reductions C and F are useless!
- How to detect useless reductions using syzygies and linear algebra?
 - i. Replace each reduction by the difference between its source and its target.
 - ii. Introduce a terminating order on labels.

- \blacktriangleright We consider abstract rewriting systems (V, \longrightarrow) such that V is a vector space and every reduction is labelled.
 - \triangleright e.g., V is spanned by the letters $\{a, b, c, d, e\}$ submitted to the reductions

- i. A' = e c, B' = c b, C' = e b, \cdots ii. $A \subseteq B \subseteq \cdots \subseteq F$.

- The reductions C and F are useless!
- How to detect useless reductions using syzygies and linear algebra?
 - i. Replace each reduction by the difference between its source and its target.
 - ii. Introduce a terminating order on labels.

- \blacktriangleright We consider abstract rewriting systems (V, \longrightarrow) such that V is a vector space and every reduction is labelled.
 - \triangleright e.g., V is spanned by the letters $\{a, b, c, d, e\}$ submitted to the reductions

- i. A' = e c, B' = c b, C' = e b, \cdots ii. $A \subseteq B \subseteq \cdots \subseteq F$.

- The reductions C and F are useless!
- How to detect useless reductions using syzygies and linear algebra?
 - i. Replace each reduction by the difference between its source and its target.
 - ii. Introduce a terminating order on labels.
 - iii. Compute a row echelon basis of the syzygies.

- \blacktriangleright We consider abstract rewriting systems (V, \longrightarrow) such that V is a vector space and every reduction is labelled.
 - \triangleright e.g., V is spanned by the letters $\{a, b, c, d, e\}$ submitted to the reductions

i.
$$A' = e - c$$
, $B' = c - b$, $C' = e - b$, \cdots
ii. $A \sqsubset B \sqsubset \cdots \sqsubset F$.

- The reductions C and F are useless!
- How to detect useless reductions using syzygies and linear algebra?
 - i. Replace each reduction by the difference between its source and its target.
 - ii. Introduce a terminating order on labels.
 - iii. Compute a row echelon basis of the syzygies.

- \blacktriangleright We consider abstract rewriting systems (V, \longrightarrow) such that V is a vector space and every reduction is labelled.
 - \triangleright e.g., V is spanned by the letters $\{a, b, c, d, e\}$ submitted to the reductions

i.
$$A'=e-c$$
, $B'=c-b$, $C'=e-b$, \cdots ii. $A \subseteq B \subseteq \cdots \subseteq F$.

iii.
$$C' - B' - A'$$
 and $F' - E' - D' + A'$.

- The reductions C and F are useless!
- How to detect useless reductions using syzygies and linear algebra?
 - i. Replace each reduction by the difference between its source and its target.
 - ii. Introduce a terminating order on labels.
 - iii. Compute a row echelon basis of the syzygies.

- \blacktriangleright We consider abstract rewriting systems (V, \longrightarrow) such that V is a vector space and every reduction is labelled.
 - \triangleright e.g., V is spanned by the letters $\{a, b, c, d, e\}$ submitted to the reductions

i.
$$A' = e - c$$
, $B' = c - b$, $C' = e - b$, \cdots
ii. $A \subseteq B \subseteq \cdots \subseteq F$.

iii.
$$C' - B' - A'$$
 and $F' - E' - D' + A'$.

- The reductions C and F are useless!
- How to detect useless reductions using syzygies and linear algebra?
 - i. Replace each reduction by the difference between its source and its target.
 - ii. Introduce a terminating order on labels.
 - iii. Compute a row echelon basis of the syzygies.
 - iv. Remove the reductions corresponding to leading terms of syzygies.

- $lackbox{We consider abstract rewriting systems } (V, \longrightarrow) \text{ such that } V \text{ is a vector space and every reduction is labelled.}$
 - \triangleright e.g., V is spanned by the letters $\{a,\ b,\ c,\ d,\ e\}$ submitted to the reductions

- i. A' = e c, B' = c b, C' = e b, ...
- ii. A \sqsubset B \sqsubset · · · \sqsubset F.
- iii. C' B' A' and F' E' D' + A'.
- iv. C and F.
- ▶ The reductions C and F are useless!
- How to detect useless reductions using syzygies and linear algebra?
 - i. Replace each reduction by the difference between its source and its target.
 - ii. Introduce a terminating order on labels.
 - iii. Compute a row echelon basis of the syzygies.
 - iv. Remove the reductions corresponding to leading terms of syzygies.

lacktriangle We fix V is a vector space equipped with a well-ordered basis (G, <).

lackbox We fix V is a vector space equipped with a well-ordered basis (G, <).

Definition.

- \triangleright An endomorphism T of V is a **reduction operator** if
 - T is a projector,
 - $ightarrow \ orall g \in \ G$, we have either T(g) = g or $\operatorname{lt}(T(g)) < g$.

▶ We fix V is a vector space equipped with a well-ordered basis (G, <).

Definition.

- ▶ An endomorphism T of V is a reduction operator if
 - T is a projector,
 - $ightharpoonup orall g \in G$, we have either T(g) = g or $\operatorname{lt}(T(g)) < g$.
- \triangleright The set of reduction operators is denoted by **RO** (G, <).

lacktriangle We fix V is a vector space equipped with a well-ordered basis (G,<).

Definition.

- \triangleright An endomorphism T of V is a reduction operator if
 - T is a projector,
 - $ightharpoonup orall g \in G$, we have either T(g) = g or $\operatorname{lt}(T(g)) < g$.
- \triangleright The set of reduction operators is denoted by **RO** (G, <).

Labelled reductions.

ightharpoonup A reduction operator T induces the labelled reductions $v \stackrel{\ell_{T,v}}{\longrightarrow} T(v)$.

• We fix V is a vector space equipped with a well-ordered basis (G, <).

Definition.

- \triangleright An endomorphism T of V is a reduction operator if
 - ▶ T is a projector,
 - $ightarrow \ orall g \in \ G$, we have either T(g) = g or $\operatorname{lt}(T(g)) < g$.
- \triangleright The set of reduction operators is denoted by **RO** (G, <).

Labelled reductions.

- ightharpoonup A reduction operator T induces the labelled reductions $v \stackrel{\ell_{T,V}}{\longrightarrow} T(v)$.
- ightharpoonup The labels of reductions induced by $F = \{T_1, \dots, T_n\} \subset \mathsf{RO}\left(G, <
 ight)$ are ordered by:

$$\ell_{T_i,u} \subset \ell_{T_i,v} := (i < j) \lor (i = j \land \operatorname{lt}(u) < \operatorname{lt}(v)).$$

▶ We fix V is a vector space equipped with a well-ordered basis (G, <).

Definition.

- \triangleright An endomorphism T of V is a reduction operator if
 - ▶ T is a projector,
 - $ightarrow \ orall g \in \ G$, we have either T(g) = g or $\operatorname{lt}(T(g)) < g$.
- \triangleright The set of reduction operators is denoted by **RO** (G, <).

Labelled reductions.

- ightharpoonup A reduction operator T induces the labelled reductions $v \stackrel{\ell_{T,V}}{\longrightarrow} T(v)$.
- ightharpoonup The labels of reductions induced by $F = \{T_1, \dots, T_n\} \subset \mathsf{RO}\left(G, <
 ight)$ are ordered by:

$$\ell_{T_i,u} \sqsubset \ell_{T_i,v} := (i < j) \lor (i = j \land \operatorname{lt}(u) < \operatorname{lt}(v)).$$

▶ We fix V is a vector space equipped with a well-ordered basis (G, <).

Definition.

- ▶ An endomorphism T of V is a reduction operator if
 - ▶ T is a projector,
 - $ightarrow \ orall g \in \ G$, we have either T(g) = g or $\operatorname{lt}(T(g)) < g$.
- \triangleright The set of reduction operators is denoted by **RO** (G, <).

Labelled reductions.

- ightharpoonup A reduction operator T induces the labelled reductions $v \stackrel{\ell_{T,v}}{\longrightarrow} T(v)$.
- ightharpoonup The labels of reductions induced by $F=\{T_1,\ \cdots,\ T_n\}\subset {\sf RO}\,({\it G},<)$ are ordered by:

$$\ell_{T_i,u} \sqsubset \ell_{T_j,v} := (i < j) \lor (i = j \land \operatorname{lt}(u) < \operatorname{lt}(v)).$$

$$\bullet \ G \ = \ \left\{ a \ < \ b \ < \ c \ < \ d \ < \ e \right\} \ \text{and}$$

 $\bullet \ G \ = \ \left\{ a \ < \ b \ < \ c \ < \ d \ < \ e \right\} \ \text{and}$

$$\ell_{\text{T}_1,e}$$

 $G = \left\{ a < b < c < d < e \right\}$ and

$$\ell_{\mathsf{T_1,e}} \; \sqsubset \; \ell_{\mathsf{T_2,c}}$$

 $G = \left\{ a < b < c < d < e \right\}$ and

$$\ell_{\mathsf{T}_1,\mathsf{e}} \; \sqsubseteq \; \ell_{\mathsf{T}_2,\mathsf{c}} \; \sqsubseteq \; \ell_{\mathsf{T}_2,\mathsf{e}}$$

 $G = \left\{ a < b < c < d < e \right\}$ and

$$\ell_{\mathsf{T}_1,e} \; \sqsubseteq \; \ell_{\mathsf{T}_2,c} \; \sqsubseteq \; \ell_{\mathsf{T}_2,e} \; \sqsubseteq \; \ell_{\mathsf{T}_3,e}$$

 $G = \left\{ a < b < c < d < e \right\}$ and

$$\ell_{\mathsf{T}_1,e} \; \sqsubseteq \; \ell_{\mathsf{T}_2,c} \; \sqsubseteq \; \ell_{\mathsf{T}_2,e} \; \sqsubseteq \; \ell_{\mathsf{T}_3,e} \; \sqsubseteq \; \ell_{\mathsf{T}_4,d}$$

 $G = \left\{ a < b < c < d < e \right\}$ and

$$\ell_{\mathsf{T}_1,e} \; \sqsubset \; \ell_{\mathsf{T}_2,c} \; \sqsubset \; \ell_{\mathsf{T}_2,e} \; \sqsubset \; \ell_{\mathsf{T}_3,e} \; \sqsubset \; \ell_{\mathsf{T}_4,d} \; \sqsubset \; \ell_{\mathsf{T}_5,d}.$$

Plan

III. Lattice description of syzygies

Syzygies.

▶ The space of syzygies of $F = \{T_1, \dots, T_n\} \subset \mathsf{RO}(G, <)$ is the kernel of $\ker(T_1) \times \dots \times \ker(T_n) \longrightarrow V, (v_1, \dots, v_n) \longmapsto v_1 + \dots + v_n.$

Syzygies.

- ▶ The space of syzygies of $F = \{T_1, \dots, T_n\} \subset \mathbf{RO}(G, <)$ is the kernel of $\ker(T_1) \times \dots \times \ker(T_n) \longrightarrow V, (v_1, \dots, v_n) \longmapsto v_1 + \dots + v_n.$
- \triangleright The space of syzygies of F is denoted by $\operatorname{syz}(F)$.

Syzygies.

- ▶ The space of syzygies of $F = \{T_1, \dots, T_n\} \subset \mathbf{RO}(G, <)$ is the kernel of $\ker(T_1) \times \dots \times \ker(T_n) \longrightarrow V, (v_1, \dots, v_n) \longmapsto v_1 + \dots + v_n.$
- \triangleright The space of syzygies of F is denoted by $\operatorname{syz}(F)$.

$$\operatorname{\mathsf{syz}}(T_1, \cdots, T_5) = \mathbb{K}\{s_1, s_2\}$$
 where

Syzygies.

- ▶ The space of syzygies of $F = \{T_1, \dots, T_n\} \subset \mathbf{RO}(G, <)$ is the kernel of $\ker(T_1) \times \dots \times \ker(T_n) \longrightarrow V, (v_1, \dots, v_n) \longmapsto v_1 + \dots + v_n.$
- \triangleright The space of syzygies of F is denoted by $\operatorname{syz}(F)$.

$$\begin{aligned} &\text{syz}\,(\,T_1,\;\cdots,\;T_5\,)\;=\;\mathbb{K}\{s_1,\;s_2\}\;\;\text{where}\\ &s_1\;=\;(\,-\,(e-c),\;(e-b)-(c-b),\;0,\;0,\;0) \end{aligned}$$

Syzygies.

- ▶ The space of syzygies of $F = \{T_1, \dots, T_n\} \subset \mathbf{RO}(G, <)$ is the kernel of $\ker(T_1) \times \dots \times \ker(T_n) \longrightarrow V, (v_1, \dots, v_n) \longmapsto v_1 + \dots + v_n.$
- \triangleright The space of syzygies of F is denoted by $\operatorname{syz}(F)$.

syz
$$(T_1, \dots, T_5) = \mathbb{K}\{s_1, s_2\}$$
 where $s_1 = (-(e-c), (e-b)-(c-b), 0, 0, 0)$

$$s_2 = (e-c, 0, -(e-a), -(d-c), d-a)$$

Syzygies.

- ▶ The space of syzygies of $F = \{T_1, \dots, T_n\} \subset \mathbf{RO}(G, <)$ is the kernel of $\ker(T_1) \times \dots \times \ker(T_n) \longrightarrow V, (v_1, \dots, v_n) \longmapsto v_1 + \dots + v_n.$
- ▶ The space of syzygies of F is denoted by syz(F).

Notation. We denote by $u_{i,g} = (0, \dots, 0, g - T_i(g), 0, \dots, 0)$.

$$\begin{aligned} & \text{syz} \, (\, T_1, \, \, \cdots, \, \, T_5 \,) \, = \, \mathbb{K} \{ s_1, \, \, s_2 \} \quad \text{where} \\ & s_1 \, = \, (\, - (e - c), \, (e - b) - (c - b), \, \, 0, \, \, 0, \, \, 0) \end{aligned}$$

$$s_2 = (e-c, 0, -(e-a), -(d-c), d-a)$$

Syzygies.

- ▶ The space of syzygies of $F = \{T_1, \dots, T_n\} \subset \mathbf{RO}(G, <)$ is the kernel of $\ker(T_1) \times \dots \times \ker(T_n) \longrightarrow V, (v_1, \dots, v_n) \longmapsto v_1 + \dots + v_n.$
- ▶ The space of syzygies of F is denoted by syz(F).

Notation. We denote by $u_{i,g} = (0, \dots, 0, g - T_i(g), 0, \dots, 0)$.

$$syz(T_1, \dots, T_5) = \mathbb{K}\{s_1, s_2\} \text{ where}$$

$$s_1 = (-(e-c), (e-b)-(c-b), 0, 0, 0)$$

$$= u_{2,e}$$

$$s_2 = (e-c, 0, -(e-a), -(d-c), d-a)$$

Syzygies.

- ▶ The space of syzygies of $F = \{T_1, \dots, T_n\} \subset \mathbf{RO}(G, <)$ is the kernel of $\ker(T_1) \times \dots \times \ker(T_n) \longrightarrow V, (v_1, \dots, v_n) \longmapsto v_1 + \dots + v_n.$
- ▶ The space of syzygies of F is denoted by syz(F).

Notation. We denote by $u_{i,g} = (0, \dots, 0, g - T_i(g), 0, \dots, 0)$.

$$syz(T_1, \dots, T_5) = \mathbb{K}\{s_1, s_2\} \text{ where}$$

$$s_1 = (-(e-c), (e-b)-(c-b), 0, 0, 0)$$

$$= u_{2,e} - u_{2,c}$$

$$s_2 = (e-c, 0, -(e-a), -(d-c), d-a)$$

Syzygies.

- ▶ The space of syzygies of $F = \{T_1, \dots, T_n\} \subset \mathbf{RO}(G, <)$ is the kernel of $\ker(T_1) \times \dots \times \ker(T_n) \longrightarrow V, (v_1, \dots, v_n) \longmapsto v_1 + \dots + v_n.$
- ▶ The space of syzygies of F is denoted by syz(F).

Notation. We denote by $u_{i,g} = (0, \dots, 0, g - T_i(g), 0, \dots, 0)$.

$$syz(T_1, \dots, T_5) = \mathbb{K}\{s_1, s_2\} \text{ where}$$

$$s_1 = (-(e-c), (e-b) - (c-b), 0, 0, 0)$$

$$= u_{2,e} - u_{2,c} - u_{1,e}$$

$$s_2 = (e-c, 0, -(e-a), -(d-c), d-a)$$

Syzygies.

- ▶ The space of syzygies of $F = \{T_1, \dots, T_n\} \subset \mathbf{RO}(G, <)$ is the kernel of $\ker(T_1) \times \dots \times \ker(T_n) \longrightarrow V, (v_1, \dots, v_n) \longmapsto v_1 + \dots + v_n.$
- \triangleright The space of syzygies of F is denoted by $\operatorname{syz}(F)$.

Notation. We denote by $u_{i,g} = (0, \dots, 0, g - T_i(g), 0, \dots, 0)$.

$$\begin{aligned} & \text{syz} \left(T_1, \ \cdots, \ T_5 \right) \ = \ \mathbb{K} \{ s_1, \ s_2 \} \ \text{ where} \\ & s_1 \ = \ \left(- \left(e - c \right), \ \left(e - b \right) - \left(c - b \right), \ 0, \ 0, \ 0 \right) \\ & = \ u_{2,e} \ - \ u_{2,c} \ - \ u_{1,e} \\ & s_2 \ = \ \left(e - c, \ 0, \ - \left(e - a \right), \ - \left(d - c \right), \ d - a \right) \\ & = \ u_{5,d} \ - \ u_{4,d} \ - \ u_{3,e} \ + \ u_{1,e} \end{aligned}$$

Lattice structure on RO (G, <).

ightharpoonup The map $\mathsf{RO}\left(G,<
ight) \longrightarrow \mathsf{Subspaces}\left(V
ight), \ T \longmapsto \mathsf{ker}\left(T\right)$ is a bijection.

Lattice structure on RO (G, <).

- ightharpoonup The map $\mathsf{RO}\left(G,<
 ight) \longrightarrow \mathsf{Subspaces}\left(V
 ight), \ T \longmapsto \mathsf{ker}\left(T
 ight)$ is a bijection.
- \triangleright **RO** (G, <) admits a lattice structure where:
 - $ightharpoonup T_1 \leq T_2 \text{ if } \ker(T_2) \subseteq \ker(T_1),$
 - $ightharpoonup T_1 \wedge T_2 := \ker^{-1}(\ker(T_1) + \ker(T_2)),$
 - $ightharpoonup T_1 \lor T_2 := \ker^{-1}(\ker(T_1) \cap \ker(T_2)).$

Lattice structure on RO(G,<).

- \triangleright The map RO(G,<) \longrightarrow Subspaces (V), $T \longmapsto \ker(T)$ is a bijection.
- \triangleright **RO** (*G*, <) admits a lattice structure where:
 - $\triangleright T_1 \prec T_2 \text{ if } \ker(T_2) \subset \ker(T_1).$
 - $\triangleright T_1 \wedge T_2 := \ker^{-1}(\ker(T_1) + \ker(T_2)).$
 - $\triangleright T_1 \lor T_2 := \ker^{-1}(\ker(T_1) \cap \ker(T_2)).$

Proposition i. Let $P = (T, T') \subset \mathbf{RO}(G, <)$. We have a linear isomorphism $\ker (T \vee T') \stackrel{\sim}{\longrightarrow} \operatorname{syz}(P)$.

Lattice structure on RO (G,<).

- ightharpoonup The map $\mathsf{RO}\left(G,<
 ight) \longrightarrow \mathsf{Subspaces}\left(V
 ight), \ T \longmapsto \mathsf{ker}\left(T
 ight)$ is a bijection.
- \triangleright **RO** (G, <) admits a lattice structure where:
 - $\triangleright T_1 \leq T_2 \text{ if } \ker(T_2) \subseteq \ker(T_1),$
 - $ightharpoonup T_1 \wedge T_2 := \ker^{-1}(\ker(T_1) + \ker(T_2)),$
 - $ightharpoonup T_1 \lor T_2 := \ker^{-1}(\ker(T_1) \cap \ker(T_2)).$

Proposition i. Let $P = (T, T') \subset RO(G, <)$. We have a linear isomorphism

$$\ker (T \vee T') \xrightarrow{\sim} \operatorname{syz}(P), \ v \longmapsto (-v, \ v).$$

Lattice structure on RO (G,<).

- ightharpoonup The map $\mathsf{RO}\left(G,<
 ight)\longrightarrow \mathsf{Subspaces}\left(V
 ight),\ T\longmapsto \mathsf{ker}\left(T
 ight)$ is a bijection.
- ightharpoonup RO(G,<) admits a lattice structure where:
 - $ightharpoonup T_1 \leq T_2 \text{ if } \ker(T_2) \subseteq \ker(T_1),$
 - $ightharpoonup T_1 \wedge T_2 := \ker^{-1}(\ker(T_1) + \ker(T_2)),$
 - $ightharpoonup T_1 \lor T_2 := \ker^{-1}(\ker(T_1) \cap \ker(T_2)).$

Proposition i. Let $P = (T, T') \subset RO(G, <)$. We have a linear isomorphism

$$\ker (T \vee T') \stackrel{\sim}{\longrightarrow} \operatorname{syz}(P).$$

Proposition ii. Let $F = \{T_1, \dots, T_n\} \subset \mathbf{RO}(G, <)$. For every integer $2 \le i \le n$, we have a short exact sequence

$$0 \longrightarrow \text{syz}\left(\textit{T}_{1}, \; \cdots, \; \textit{T}_{i-1}\right) \stackrel{\iota_{i}}{\longrightarrow} \text{syz}\left(\textit{T}_{1}, \; \cdots, \; \textit{T}_{i}\right) \stackrel{\pi_{i}}{\longrightarrow} \text{syz}\left(\textit{T}_{1} \wedge \cdots \wedge \textit{T}_{i-1}, \; \textit{T}_{i}\right) \longrightarrow 0.$$

▶ How to construct a basis of syz(F)?

- ▶ How to construct a basis of $\mathbf{syz}(F)$?
 - ightharpoonup We have $\operatorname{\mathsf{syz}}(T_1,\ T_2) \subseteq \operatorname{\mathsf{syz}}(T_1,\ T_2,\ T_3) \subseteq \cdots \subseteq \operatorname{\mathsf{syz}}(T_1,\ \cdots,\ T_n).$

- ▶ How to construct a basis of $\mathbf{syz}(F)$?
 - ightharpoonup We have $\operatorname{\mathsf{syz}}(T_1,\ T_2)\subseteq\operatorname{\mathsf{syz}}(T_1,\ T_2,\ T_3)\subseteq\cdots\subseteq\operatorname{\mathsf{syz}}(T_1,\ \cdots,\ T_n).$
 - \triangleright Main step: construct a supplement of $\operatorname{syz}(T_1, \dots, T_{i-1})$ in $\operatorname{syz}(T_1, \dots, T_i)$.

- ▶ How to construct a basis of $\mathbf{syz}(F)$?
 - \triangleright We have $\operatorname{\mathsf{syz}}(T_1, T_2) \subseteq \operatorname{\mathsf{syz}}(T_1, T_2, T_3) \subseteq \cdots \subseteq \operatorname{\mathsf{syz}}(T_1, \cdots, T_n)$.
 - \triangleright Main step: construct a supplement of $\operatorname{syz}(T_1, \dots, T_{i-1})$ in $\operatorname{syz}(T_1, \dots, T_i)$.
 - ▶ This supplement is constructed using the isomorphism

$$\operatorname{\mathsf{syz}} \left(T_1 \ \cdots, \ T_i \right) / \operatorname{\mathsf{syz}} \left(T_1, \ \cdots, \ T_{i-1} \right) \ \cong \ \ker \left(\left(T_1 \wedge \cdots \wedge T_{i-1} \right) \vee T_i \right).$$

- ▶ How to construct a basis of $\mathbf{syz}(F)$?
 - ightharpoonup We have $\operatorname{\mathsf{syz}}(T_1,\ T_2)\ \subseteq\ \operatorname{\mathsf{syz}}(T_1,\ T_2,\ T_3)\ \subseteq\ \cdots\ \subseteq\ \operatorname{\mathsf{syz}}(T_1,\ \cdots,\ T_n).$
 - \triangleright Main step: construct a supplement of $\operatorname{syz}(T_1, \dots, T_{i-1})$ in $\operatorname{syz}(T_1, \dots, T_i)$.
 - ▶ This supplement is constructed using the isomorphism

$$\mathsf{syz}\left(T_1\ \cdots,\ T_i\right)/\mathsf{syz}\left(T_1,\ \cdots,\ T_{i-1}\right)\ \simeq\ \mathsf{ker}\left(\left(T_1\wedge\cdots\wedge T_{i-1}\right)\vee T_i\right).$$

Example.

- ▶ How to construct a basis of $\mathbf{syz}(F)$?
 - ightharpoonup We have $\mathsf{syz}(T_1,\ T_2)\ \subseteq\ \mathsf{syz}(T_1,\ T_2,\ T_3)\ \subseteq\ \cdots\ \subseteq\ \mathsf{syz}(T_1,\ \cdots,\ T_n).$
 - ightharpoonup Main step: construct a supplement of $\operatorname{syz}(T_1, \cdots, T_{i-1})$ in $\operatorname{syz}(T_1, \cdots, T_i)$.
 - ▶ This supplement is constructed using the isomorphism

$$\mathsf{syz}\left(T_1\ \cdots,\ T_i\right)/\mathsf{syz}\left(T_1,\ \cdots,\ T_{i-1}\right)\ \simeq\ \mathsf{ker}\left(\left(T_1\wedge\cdots\wedge T_{i-1}\right)\vee T_i\right).$$

Example.

Step 1. We have $\ker (T_1 \vee T_2) = \mathbb{K}\{e - c\}$.

- ▶ How to construct a basis of $\mathbf{syz}(F)$?
 - ightharpoonup We have $\mathsf{syz}(T_1,\ T_2)\ \subseteq\ \mathsf{syz}(T_1,\ T_2,\ T_3)\ \subseteq\ \cdots\ \subseteq\ \mathsf{syz}(T_1,\ \cdots,\ T_n).$
 - ightharpoonup Main step: construct a supplement of $\operatorname{syz}(T_1, \cdots, T_{i-1})$ in $\operatorname{syz}(T_1, \cdots, T_i)$.
 - ▶ This supplement is constructed using the isomorphism

$$\mathsf{syz}\left(T_1\ \cdots,\ T_i\right)/\mathsf{syz}\left(T_1,\ \cdots,\ T_{i-1}\right)\ \simeq\ \mathsf{ker}\left(\left(T_1\wedge\cdots\wedge T_{i-1}\right)\vee T_i\right).$$

Example.

Step 1. We have $\ker (T_1 \vee T_2) = \mathbb{K}\{e - c\}$.

$$\triangleright e - c = e - T_1(e).$$

- How to construct a basis of syz (F)?
 - ightharpoonup We have $\operatorname{\mathsf{syz}}(T_1,\ T_2)\subseteq\operatorname{\mathsf{syz}}(T_1,\ T_2,\ T_3)\subseteq\cdots\subseteq\operatorname{\mathsf{syz}}(T_1,\ \cdots,\ T_n)$.
 - ▶ Main step: construct a supplement of $\operatorname{syz}(T_1, \dots, T_{i-1})$ in $\operatorname{syz}(T_1, \dots, T_i)$.
 - ▶ This supplement is constructed using the isomorphism

$$\mathsf{syz}\left(T_1\ \cdots,\ T_i\right)/\mathsf{syz}\left(T_1,\ \cdots,\ T_{i-1}\right)\ \simeq\ \mathsf{ker}\left(\left(T_1\wedge\cdots\wedge T_{i-1}\right)\vee T_i\right).$$

Example.

Step 1. We have $\ker (T_1 \vee T_2) = \mathbb{K}\{e - c\}$.

$$\triangleright e - c = e - T_1(e).$$

$$\triangleright e - c = (e - T_2(e)) - (c - T_2(c)).$$

- How to construct a basis of syz (F)?
 - ightharpoonup We have $\operatorname{\mathsf{syz}}(T_1,\ T_2) \subseteq \operatorname{\mathsf{syz}}(T_1,\ T_2,\ T_3) \subseteq \cdots \subseteq \operatorname{\mathsf{syz}}(T_1,\ \cdots,\ T_n)$.
 - \triangleright Main step: construct a supplement of $\operatorname{syz}(T_1, \dots, T_{i-1})$ in $\operatorname{syz}(T_1, \dots, T_i)$.
 - ▶ This supplement is constructed using the isomorphism

$$\operatorname{\mathsf{syz}} \left(\mathsf{T}_1 \ \cdots, \ \mathsf{T}_i \right) / \operatorname{\mathsf{syz}} \left(\mathsf{T}_1, \ \cdots, \ \mathsf{T}_{i-1} \right) \ \cong \ \ker \left(\left(\mathsf{T}_1 \wedge \cdots \wedge \mathsf{T}_{i-1} \right) \vee \mathsf{T}_i \right).$$

Example.

Step 1. We have $\ker(T_1 \vee T_2) = \mathbb{K}\{e - c\}$.

$$\triangleright e - c = e - T_1(e).$$

$$\triangleright e - c = (e - T_2(e)) - (c - T_2(c)).$$

▶ We get the first basis element:

$$s_1 = u_{2,e}$$

- How to construct a basis of syz (F)?
 - ightharpoonup We have $\operatorname{\mathsf{syz}}(T_1,\ T_2) \subseteq \operatorname{\mathsf{syz}}(T_1,\ T_2,\ T_3) \subseteq \cdots \subseteq \operatorname{\mathsf{syz}}(T_1,\ \cdots,\ T_n)$.
 - ▶ Main step: construct a supplement of $\operatorname{syz}(T_1, \dots, T_{i-1})$ in $\operatorname{syz}(T_1, \dots, T_i)$.
 - ▶ This supplement is constructed using the isomorphism

$$\mathsf{syz}\left(T_1\ \cdots,\ T_i\right)/\mathsf{syz}\left(T_1,\ \cdots,\ T_{i-1}\right)\ \simeq\ \mathsf{ker}\left(\left(T_1\wedge\cdots\wedge T_{i-1}\right)\vee T_i\right).$$

Example.

Step 1. We have $\ker (T_1 \vee T_2) = \mathbb{K}\{e - c\}$.

$$\triangleright e - c = e - T_1(e).$$

$$\triangleright e - c = (e - T_2(e)) - (c - T_2(c)).$$

▶ We get the first basis element:

$$s_1 = u_{2,e} - u_{2,e}$$

- How to construct a basis of syz (F)?
 - ightharpoonup We have $\operatorname{\mathsf{syz}}(T_1,\ T_2) \subseteq \operatorname{\mathsf{syz}}(T_1,\ T_2,\ T_3) \subseteq \cdots \subseteq \operatorname{\mathsf{syz}}(T_1,\ \cdots,\ T_n)$.
 - \triangleright Main step: construct a supplement of $\operatorname{syz}(T_1, \dots, T_{i-1})$ in $\operatorname{syz}(T_1, \dots, T_i)$.
 - ▶ This supplement is constructed using the isomorphism

$$\mathsf{syz}\left(T_1\ \cdots,\ T_i\right)/\mathsf{syz}\left(T_1,\ \cdots,\ T_{i-1}\right)\ \simeq\ \mathsf{ker}\left(\left(T_1\wedge\cdots\wedge T_{i-1}\right)\vee T_i\right).$$

Example.

Step 1. We have $\ker (T_1 \vee T_2) = \mathbb{K}\{e - c\}$.

$$\triangleright e - c = e - T_1(e).$$

$$\triangleright e - c = (e - T_2(e)) - (c - T_2(c)).$$

▶ We get the first basis element:

$$s_1 = u_{2,e} - u_{2,c} - u_{1,c}$$

- How to construct a basis of syz (F)?
 - \triangleright We have syz $(T_1, T_2) \subseteq \text{syz}(T_1, T_2, T_3) \subseteq \cdots \subseteq \text{syz}(T_1, \cdots, T_n)$.
 - \triangleright Main step: construct a supplement of syz (T_1, \dots, T_{i-1}) in syz (T_1, \dots, T_i) .
 - This supplement is constructed using the isomorphism

$$\mathsf{syz}\left(T_1\ \cdots,\ T_i\right)/\mathsf{syz}\left(T_1,\ \cdots,\ T_{i-1}\right)\ \simeq\ \mathsf{ker}\left(\left(T_1\wedge\cdots\wedge T_{i-1}\right)\vee T_i\right).$$

Example.

Step 2. We have $\ker ((T_1 \wedge T_2) \vee T_3) = \{0\}.$

- ▶ How to construct a basis of syz (F)?
 - ightharpoonup We have $\mathsf{syz}(T_1,\ T_2)\ \subseteq\ \mathsf{syz}(T_1,\ T_2,\ T_3)\ \subseteq\ \cdots\ \subseteq\ \mathsf{syz}(T_1,\ \cdots,\ T_n).$
 - ▶ Main step: construct a supplement of $\operatorname{syz}(T_1, \dots, T_{i-1})$ in $\operatorname{syz}(T_1, \dots, T_i)$.
 - ▶ This supplement is constructed using the isomorphism

$$\operatorname{\mathsf{syz}}\left(T_1 \ \cdots, \ T_i\right)/\operatorname{\mathsf{syz}}\left(T_1, \ \cdots, \ T_{i-1}\right) \ \simeq \ \ker\left(\left(T_1 \wedge \cdots \wedge T_{i-1}\right) \vee T_i\right).$$

Example.

Step 2. We have $\ker ((T_1 \wedge T_2) \vee T_3) = \{0\}.$

▶ No new basis element!

- ▶ How to construct a basis of syz (F)?
 - ightharpoonup We have $\operatorname{\mathsf{syz}}(T_1,\ T_2) \subseteq \operatorname{\mathsf{syz}}(T_1,\ T_2,\ T_3) \subseteq \cdots \subseteq \operatorname{\mathsf{syz}}(T_1,\ \cdots,\ T_n)$.
 - ightharpoonup Main step: construct a supplement of $\operatorname{syz}(T_1, \cdots, T_{i-1})$ in $\operatorname{syz}(T_1, \cdots, T_i)$.
 - ▶ This supplement is constructed using the isomorphism

$$\operatorname{\mathsf{syz}}\left(T_1\ \cdots,\ T_i\right)/\operatorname{\mathsf{syz}}\left(T_1,\ \cdots,\ T_{i-1}\right)\ \simeq\ \ker\left(\left(T_1\wedge\cdots\wedge T_{i-1}\right)\vee T_i\right).$$

Example.

Step 3.
$$\ker ((T_1 \wedge T_2 \wedge T_3) \vee T_4) = \{0\}.$$

▶ No new basis element!

- ▶ How to construct a basis of syz (F)?
 - ightharpoonup We have $\operatorname{\mathsf{syz}}(T_1,\ T_2)\subseteq\operatorname{\mathsf{syz}}(T_1,\ T_2,\ T_3)\subseteq\cdots\subseteq\operatorname{\mathsf{syz}}(T_1,\ \cdots,\ T_n).$
 - \triangleright Main step: construct a supplement of $\operatorname{syz}(T_1, \dots, T_{i-1})$ in $\operatorname{syz}(T_1, \dots, T_i)$.
 - ▶ This supplement is constructed using the isomorphism

$$\mathsf{syz}\left(T_1 \cdots, T_i\right)/\mathsf{syz}\left(T_1, \cdots, T_{i-1}\right) \simeq \mathsf{ker}\left(\left(T_1 \wedge \cdots \wedge T_{i-1}\right) \vee T_i\right)$$

Example.

Step 4. We have

$$\ker ((T_1 \wedge T_2 \wedge T_3 \wedge T_4) \vee T_5) = \mathbb{K}\{d - a\}.$$

$$b d-a = (d-T_4(d))+(e-T_3(e))-(e-T_1(e)).$$

$$\triangleright d - a = d - T_5(d).$$

▶ We get the second basis element:

$$s_2 = u_{5,d} - u_{4,d} - u_{3,e} + u_{1,e}.$$

The criterion. Let $F = \{T_1, \dots, T_n\} \subset RO(G, <)$.

The criterion. Let
$$F = \{T_1, \dots, T_n\} \subset RO(G, <)$$
.

▶ The useless reductions are labelled by leading terms of syzygies.

- The criterion. Let $F = \{T_1, \dots, T_n\} \subset RO(G, <)$.
 - ▶ The useless reductions are labelled by leading terms of syzygies.
 - ightharpoonup These labels are $\ell_{T_i,g}$, where $g\notin \operatorname{im} ((T_1\wedge\cdots\wedge T_{i-1})\vee T_i)$.

Example.

- The criterion. Let $F = \{T_1, \dots, T_n\} \subset RO(G, <)$.
 - ▶ The useless reductions are labelled by leading terms of syzygies.
 - ▶ These labels are $\ell_{T_i,g}$, where $g \notin \text{im}((T_1 \land \cdots \land T_{i-1}) \lor T_i)$.

Example.

The criterion. Let $F = \{T_1, \dots, T_n\} \subset RO(G, <)$.

- ▶ The useless reductions are labelled by leading terms of syzygies.
 - ightharpoonup These labels are $\ell_{T_i,g}$, where $g\notin \operatorname{im} ((T_1\wedge\cdots\wedge T_{i-1})\vee T_i)$.

Example.

We have:

 $\ell_{\mathsf{T_3,e}}$ $\triangleright \ker (\mathcal{T}_1 \vee \mathcal{T}_2) = \mathbb{K}\{e - c\}.$

The criterion. Let $F = \{T_1, \dots, T_n\} \subset \mathsf{RO}(G,<)$.

- ▶ The useless reductions are labelled by leading terms of syzygies.
 - ▶ These labels are $\ell_{T_i,g}$, where $g \notin \operatorname{im} ((T_1 \wedge \cdots \wedge T_{i-1}) \vee T_i)$.

Example.

We have:

$$\begin{array}{ccc}
\ell_{\mathsf{T_3},e} & \triangleright \ \ker \left(T_1 \vee T_2 \right) &= \ \mathbb{K}\{e \ - \ c\}. \\
& \triangleright \ T_1 \vee T_2(e) &= \ c.
\end{array}$$

$$T_1 \vee T_2(e) = c.$$

The criterion. Let $F = \{T_1, \dots, T_n\} \subset RO(G, <)$.

▶ The useless reductions are labelled by leading terms of syzygies.

ightharpoonup These labels are $\ell_{T_i,g}$, where $g \notin \operatorname{im} ((T_1 \wedge \cdots \wedge T_{i-1}) \vee T_i)$.

Example.

We have:

$$\triangleright \ker (T_1 \vee T_2) = \mathbb{K}\{e - c\}.$$

$$\triangleright T_1 \vee T_2(e) = c.$$

▶ The labelled reduction $\ell_{\mathsf{T}_2,\mathsf{e}}$ is useless.

The criterion. Let $F = \{T_1, \dots, T_n\} \subset RO(G, <)$.

- ▶ The useless reductions are labelled by leading terms of syzygies.
 - ightharpoonup These labels are $\ell_{T_i,g}$, where $g \notin \operatorname{im} ((T_1 \wedge \cdots \wedge T_{i-1}) \vee T_i)$.

Example.

We have:

$$\triangleright \ker (T_1 \vee T_2) = \mathbb{K}\{e - c\}.$$

$$\triangleright T_1 \vee T_2(e) = c.$$

ightharpoonup The labelled reduction $\ell_{\mathsf{T}_2,\mathsf{e}}$ is useless.

$$\triangleright \ \ker \left(\left(\, T_1 \wedge \, T_2 \wedge \ \, T_3 \wedge \, T_4 \right) \vee \, T_5 \right) \; = \; \mathbb{K} \{ d \; - \; a \}.$$

 $\,\,{\,\trianglerighteq}\,\,$ The labelled reduction $\ell_{\mathsf{T}_5,\mathsf{d}}$ is useless.

The criterion. Let $F = \{T_1, \dots, T_n\} \subset RO(G, <)$.

- ▶ The useless reductions are labelled by leading terms of syzygies.
 - ightharpoonup These labels are $\ell_{T_i,g}$, where $g \notin \operatorname{im} ((T_1 \wedge \cdots \wedge T_{i-1}) \vee T_i)$.

Example.

We have:

$$\triangleright \ker (T_1 \vee T_2) = \mathbb{K}\{e - c\}.$$

$$\triangleright T_1 \vee T_2(e) = c.$$

- ightharpoonup The labelled reduction $\ell_{\mathsf{T}_2,\mathsf{e}}$ is useless.
- $\triangleright \ \ker \left(\left(T_1 \wedge T_2 \wedge \ T_3 \wedge T_4 \right) \vee T_5 \right) \ = \ \mathbb{K} \{ d \ \ a \}.$
 - ightharpoonup The labelled reduction $\ell_{\mathsf{T}_5,\mathsf{d}}$ is useless.

THANK YOU FOR YOUR ATTENTION!