Reduction operators: completion, syzygies and Koszul duality

Cyrille Chenavier

Johannes Kepler University, Institute for Algebra

Séminaire LIRICA

March 9, 2020

Plan

I. Motivations

- computational problems and rewriting theory
- termination, confluence and Gröbner bases

II. Reduction operators

- reduction operators and linear rewriting systems
- lattice structure of reduction operators
- Iattice descriptions of confluence and completion

III. Applications

- Iattice structure and linear basis of syzygies
- ▷ construction of a contracting homotopy for the Koszul complex

IV. Conclusion

I. MOTIVATIONS

Computational problems in algebra:

- how to compute linear bases for K-algebras?
- solve decision problems, formal analysis of functional systems, computation of algebraic invariants, prove operator identities, ...

Rewriting theory: orientation of relations

• notion of normal forms \rightsquigarrow "simple" representatives of congruence classes

Example: the polynomial algebra over two indeterminates

 $\mathbb{K}[x,y] = \mathbb{K}\langle x,y \mid yx - xy \rangle: \text{ noncommutative polynomials modulo } yx - xy \equiv 0$

- chosen orientation: $yx \rightarrow xy$
- a NF computation: $3 yxx + xyx xy \rightarrow 4 xyx xy \rightarrow 4 xxy xy$

Computational problems in algebra:

- how to compute linear bases for K-algebras?
- solve decision problems, formal analysis of functional systems, computation of algebraic invariants, prove operator identities, ...

Rewriting theory: orientation of relations

• notion of normal forms \rightarrow "simple" representatives of congruence classes

Example: the polynomial algebra over two indeterminates

 $\mathbb{K}[x,y] = \mathbb{K} \langle x,y \mid yx - xy \rangle: \quad \text{noncommutative polynomials modulo } yx - xy \equiv 0$

- chosen orientation: $yx \rightarrow xy$
- a NF computation: $3 yxx + xyx xy \rightarrow 4 xyx xy \rightarrow 4 xxy xy$

Computational problems in algebra:

- how to compute linear bases for K-algebras?
- solve decision problems, formal analysis of functional systems, computation of algebraic invariants, prove operator identities, ...

Rewriting theory: orientation of relations

• notion of normal forms \rightsquigarrow "simple" representatives of congruence classes

Example: the polynomial algebra over two indeterminates

 $\mathbb{K}[x,y] = \mathbb{K}\langle x,y \mid yx - xy \rangle: \text{ noncommutative polynomials modulo } yx - xy \equiv 0$

- chosen orientation: $yx \rightarrow xy$
- a NF computation: $3 yxx + xyx xy \rightarrow 4 xyx xy \rightarrow 4 xxy xy$

Computational problems in algebra:

- how to compute linear bases for K-algebras?
- solve decision problems, formal analysis of functional systems, computation of algebraic invariants, prove operator identities, ...

Rewriting theory: orientation of relations

• notion of normal forms \rightarrow "simple" representatives of congruence classes

Example: the polynomial algebra over two indeterminates

 $\mathbb{K}[x,y] = \mathbb{K}\langle x,y \mid yx - xy \rangle: \text{ noncommutative polynomials modulo } yx - xy \equiv 0$

- chosen orientation: $yx \rightarrow xy$
- a NF computation: $3 yxx + xyx xy \rightarrow 4 xyx xy \rightarrow 4 xxy xy$

Computational problems in algebra:

- how to compute linear bases for K-algebras?
- solve decision problems, formal analysis of functional systems, computation of algebraic invariants, prove operator identities, ...

Rewriting theory: orientation of relations

• notion of normal forms \rightarrow "simple" representatives of congruence classes

Example: the polynomial algebra over two indeterminates

 $\mathbb{K}[x,y] = \mathbb{K} \langle x,y \mid yx - xy \rangle: \quad \text{noncommutative polynomials modulo } yx - xy \equiv 0$

- chosen orientation: $yx \rightarrow xy$
- a NF computation: $3 yxx + xyx xy \rightarrow 4 xyx xy \rightarrow 4 xxy xy$

Computational problems in algebra:

- how to compute linear bases for K-algebras?
- solve decision problems, formal analysis of functional systems, computation of algebraic invariants, prove operator identities, ...

Rewriting theory: orientation of relations

• notion of normal forms \rightsquigarrow "simple" representatives of congruence classes

Example: the polynomial algebra over two indeterminates

 $\mathbb{K}[x,y] = \mathbb{K}\langle x,y \mid yx - xy \rangle: \text{ noncommutative polynomials modulo } yx - xy \equiv 0$

- chosen orientation: $yx \rightarrow xy$
- a NF computation: $3 yxx + xyx xy \rightarrow 4 xyx xy \rightarrow 4 xxy xy$

Computational problems in algebra:

- how to compute linear bases for K-algebras?
- solve decision problems, formal analysis of functional systems, computation of algebraic invariants, prove operator identities, ...

Rewriting theory: orientation of relations

• notion of normal forms \rightsquigarrow "simple" representatives of congruence classes

Example: the polynomial algebra over two indeterminates

 $\mathbb{K}[x,y] = \mathbb{K}\langle x,y \mid yx - xy \rangle: \text{ noncommutative polynomials modulo } yx - xy \equiv 0$

- chosen orientation: $yx \rightarrow xy$
- a NF computation: $3 yxx + xyx xy \rightarrow 4 xyx xy \rightarrow 4 xxy xy$

Questions

Given $\mathbf{A} = \mathbb{K}\langle X \mid R \rangle$ presented by generators and oriented relations

do NF monomials form a linear basis of A?

Equivalently:

- do NF monomials form a generating family of A?
- do NF monomials form a free family in A?

Questions

Given $\mathbf{A} = \mathbb{K}\langle X \mid R \rangle$ presented by generators and oriented relations

do NF monomials form a linear basis of A?

Equivalently:

- do NF monomials form a generating family of A?
- do NF monomials form a free family in A?

Questions

Given $\mathbf{A} = \mathbb{K}\langle X \mid R \rangle$ presented by generators and oriented relations

do NF monomials form a linear basis of A?

Equivalently:

- do NF monomials form a generating family of A?
- do NF monomials form a free family in A?

Normalisation

Example: $\mathbb{K}\langle x \mid xx - x \rangle$ has basis $\{\overline{1}, \overline{x}\}$

- chosen orientation: $x \rightarrow xx \rightsquigarrow 1$ is the only NF monomial
- in general: NF monomials do not form a generating family

Definition: an orientation is terminating if there is no infinite rew. sequence

$$f_1 \rightarrow f_2 \rightarrow \cdots \rightarrow f_n \rightarrow f_{n+1} \rightarrow \cdots$$

Counterexample: $x \to xx$ and $f_n = x^n$

Fact

If \rightarrow is a terminating, then NF monomials form a generating family

Normalisation

Example: $\mathbb{K}\langle x \mid xx - x \rangle$ has basis $\{\overline{1}, \overline{x}\}$

- chosen orientation: $x \rightarrow xx \rightsquigarrow 1$ is the only NF monomial
- in general: NF monomials do not form a generating family

Definition: an orientation is terminating if there is no infinite rew. sequence

$$f_1 \rightarrow f_2 \rightarrow \cdots \rightarrow f_n \rightarrow f_{n+1} \rightarrow \cdots$$

Counterexample: $x \to xx$ and $f_n = x^n$

Fact

If \rightarrow is a terminating, then NF monomials form a generating family

Normalisation

Example: $\mathbb{K}\langle x \mid xx - x \rangle$ has basis $\{\overline{1}, \overline{x}\}$

- chosen orientation: $x \rightarrow xx \rightsquigarrow 1$ is the only NF monomial
- in general: NF monomials do not form a generating family

Definition: an orientation is terminating if there is no infinite rew. sequence

$$f_1 \rightarrow f_2 \rightarrow \cdots \rightarrow f_n \rightarrow f_{n+1} \rightarrow \cdots$$

Counterexample: $x \to xx$ and $f_n = x^n$

Fact

If \rightarrow is a terminating, then NF monomials form a generating family

Motivations

Confluence

Deterministic computations

Example: $\mathbb{K}\langle x, y \mid yy - yx \rangle \rightsquigarrow$ chosen orientation: $yy \rightarrow yx$

• $\overline{yxy} = \overline{yxx} \rightsquigarrow NF$ monomials do not form a free family

Definition: an orientation is confluent if

Fact

If \rightarrow is confluent, NF monomials form free family

Motivations

Confluence

Deterministic computations

Example: $\mathbb{K}\langle x, y \mid yy - yx \rangle \rightsquigarrow$ chosen orientation: $yy \rightarrow yx$

• $\overline{yxy} = \overline{yxx} \rightsquigarrow NF$ monomials do not form a free family

Definition: an orientation is confluent if

Fact

If \rightarrow is confluent, NF monomials form free family

Motivations

Confluence

Deterministic computations

Example: $\mathbb{K}\langle x, y \mid yy - yx \rangle \rightsquigarrow$ chosen orientation: $yy \rightarrow yx$

• $\overline{yxy} = \overline{yxx} \rightsquigarrow NF$ monomials do not form a free family

Definition: an orientation is confluent if

Fact

If \rightarrow is confluent, NF monomials form free family

Let I be a (non)commutative polynomial ideal, $R \subseteq I$ and < a monomial order

Definition: R is a (non)commutative Gröbner basis of I if Im(R) generates Im(I)

Rew. interpretation: $\{lm(g) \rightarrow r(g) : g \in R\}$ is a confluent orientation

Illustration: $f \in I$ iff $f \stackrel{*}{\rightarrow}_R 0 \quad \rightsquigarrow \quad \text{independent of the rew. path!}$

Reduction operators: representation theory of rew. systems

- formalisation of noncommutative GB [Bergman 78]
- lattice characterisation of quadratic GB applied to Koszul duality [Berger 98]

Objectives of the talk

- lattice characterisation of the confluence property (for abstract linear rew. systems)
- lattice interpretation of completion
- applications to computation of syzygies and Koszul duality

Let I be a (non)commutative polynomial ideal, $R \subseteq I$ and < a monomial order

Definition: R is a (non)commutative **Gröbner basis** of I if Im(R) generates Im(I)

Rew. interpretation: $\{lm(g) \rightarrow r(g) : g \in R\}$ is a confluent orientation

Illustration: $f \in I$ iff $f \stackrel{*}{\rightarrow}_R 0 \quad \rightsquigarrow \quad \text{independent of the rew. path!}$

Reduction operators: representation theory of rew. systems

- formalisation of noncommutative GB [Bergman 78]
- lattice characterisation of quadratic GB applied to Koszul duality [Berger 98]

Objectives of the talk

- lattice characterisation of the confluence property (for abstract linear rew. systems)
- lattice interpretation of completion
- applications to computation of syzygies and Koszul duality

Let I be a (non)commutative polynomial ideal, $R \subseteq I$ and < a monomial order

Definition: R is a (non)commutative **Gröbner basis** of I if Im(R) generates Im(I)

Rew. interpretation: $\{Im(g) \rightarrow r(g) : g \in R\}$ is a confluent orientation

Illustration: $f \in I$ iff $f \stackrel{*}{\rightarrow}_R 0 \quad \rightsquigarrow \quad$ independent of the rew. path!

Reduction operators: representation theory of rew. systems

- formalisation of noncommutative GB [Bergman 78]
- lattice characterisation of quadratic GB applied to Koszul duality [Berger 98]

Objectives of the talk

- lattice characterisation of the confluence property (for abstract linear rew. systems)
- lattice interpretation of completion
- applications to computation of syzygies and Koszul duality

Let I be a (non)commutative polynomial ideal, $R \subseteq I$ and < a monomial order

Definition: R is a (non)commutative **Gröbner basis** of I if Im(R) generates Im(I)

Rew. interpretation: $\{lm(g) \rightarrow r(g) : g \in R\}$ is a confluent orientation

Illustration: $f \in I$ iff $f \stackrel{*}{\rightarrow}_R 0 \quad \rightsquigarrow \quad \text{independent of the rew. path!}$

Reduction operators: representation theory of rew. systems

- formalisation of noncommutative GB [Bergman 78]
- lattice characterisation of quadratic GB applied to Koszul duality [Berger 98]

Objectives of the talk

- lattice characterisation of the confluence property (for abstract linear rew. systems)
- lattice interpretation of completion
- applications to computation of syzygies and Koszul duality

II. REDUCTION OPERATORS

Example: $yy \rightarrow yx \rightsquigarrow \text{left/right-reduction operators on 3 letter words}$

Properties of R.O.: L and R are functions that are

- endomorphisms of *G* := {3 letter words}
- projectors, *i.e.*, $T^2 = T$
- not increasing w.r.t. <_deglex, i.e.,

$$\forall g \in G : T(g) = g \text{ or } T(g) <_{\text{deglex}} g$$

Example: $yy \rightarrow yx \rightsquigarrow \text{left/right-reduction operators on 3 letter words}$

Properties of R.O.: L and R are functions that are

- endomorphisms of *G* := {3 letter words}
- projectors, *i.e.*, $T^2 = T$
- not increasing w.r.t. <_deglex, i.e.,

$$\forall g \in G : T(g) = g \text{ or } T(g) <_{\text{deglex}} g$$

Example: $yy \rightarrow yx \rightsquigarrow \text{left/right-reduction operators on 3 letter words}$

Properties of R.O.: L and R are functions that are

- endomorphisms of *G* := {3 letter words}
- projectors, *i.e.*, $T^2 = T$
- not increasing w.r.t. <_deglex, i.e.,

$$\forall g \in G : T(g) = g \text{ or } T(g) <_{\text{deglex}} g$$

Example: $yy \rightarrow yx \rightsquigarrow \text{left/right-reduction operators on 3 letter words}$

Properties of R.O.: L and R are functions that are

- endomorphisms of *G* := {3 letter words}
- projectors, *i.e.*, $T^2 = T$
- not increasing w.r.t. <_deglex, i.e.,

$$\forall g \in G: T(g) = g \text{ or } T(g) <_{\text{deglex}} g$$

Remark: a S.R.S. can be embedded in a rew. system on noncommutative polynomials

Example: $yy \rightarrow yx \rightsquigarrow \text{left/right-reduction operators on 3 letter words}$

Properties of R.O.: L and R are functions that are

- endomorphisms of *G* := {3 letter words}
- projectors, *i.e.*, $T^2 = T$
- not increasing w.r.t. <deglex, i.e.,

$$\forall g \in G: T(g) = g \text{ or } T(g) <_{\text{deglex}} g$$

Fixed: a well-ordered set (G, <), *e.g.*,

- noncommutative algebras: $G \rightsquigarrow$ words, $< \rightsquigarrow$ monomial order
- matrices: $G \rightsquigarrow$ a finite basis, $< \rightsquigarrow$ a rank on basis elements

Definition: a reduction operator relative to $(\mathbb{K}G, <)$ is a linear projector of $\mathbb{K}G$ s.t.

$$\forall g \in G: T(g) = g \text{ or } T(g) < g$$

Matrix representation for homogeneous algebras

For the rew. rule $yy \rightarrow yx$: L/R are left/right R.O. on

 \mathbb{K} {*yxx*, *yxy*, *yyx*, *yyy*}

$$L = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \qquad R = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Fixed: a well-ordered set (G, <), *e.g.*,

- noncommutative algebras: $G \rightsquigarrow$ words, $< \rightsquigarrow$ monomial order
- matrices: $G \rightarrow$ a finite basis, $\langle \rightarrow \rangle$ a rank on basis elements

Definition: a reduction operator relative to $(\mathbb{K}G, <)$ is a linear projector of $\mathbb{K}G$ s.t.

$$\forall g \in G: T(g) = g \text{ or } T(g) < g$$

Matrix representation for homogeneous algebras

For the rew. rule $yy \rightarrow yx$: L/R are left/right R.O. on

 \mathbb{K} {*yxx*, *yxy*, *yyx*, *yyy*}

$$L = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \qquad R = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Fixed: a well-ordered set (G, <), *e.g.*,

- noncommutative algebras: $G \rightsquigarrow$ words, $< \rightsquigarrow$ monomial order
- matrices: $G \rightsquigarrow$ a finite basis, $< \rightsquigarrow$ a rank on basis elements

Definition: a reduction operator relative to $(\mathbb{K}G, <)$ is a linear projector of $\mathbb{K}G$ s.t.

$$\forall g \in G: T(g) = g \text{ or } T(g) < g$$

Matrix representation for homogeneous algebras

For the rew. rule $yy \rightarrow yx$: L/R are left/right R.O. on

 \mathbb{K} {*yxx*, *yxy*, *yyx*, *yyy*}

$$L = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \qquad R = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Fixed: a well-ordered set (G, <), *e.g.*,

- noncommutative algebras: $G \rightsquigarrow$ words, $< \rightsquigarrow$ monomial order
- matrices: $G \rightsquigarrow$ a finite basis, $< \rightsquigarrow$ a rank on basis elements

Definition: a reduction operator relative to $(\mathbb{K}G, <)$ is a linear projector of $\mathbb{K}G$ s.t.

$$\forall g \in G: T(g) = g \text{ or } T(g) < g$$

Matrix representation for homogeneous algebras

For the rew. rule $yy \rightarrow yx$: L/R are left/right R.O. on

 \mathbb{K} {*yxx*, *yxy*, *yyx*, *yyy*}

$$\mathsf{L} = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \qquad \mathsf{R} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Theorem

i. The kernel map induces a bijection between RO and subspaces of $\mathbb{K}G$:

$$\operatorname{ker}: \operatorname{\mathbf{RO}} \xrightarrow{\sim} \{\operatorname{subspaces of } \mathbb{K}G\}, \ T \mapsto \operatorname{ker}(T)$$

- ii. RO admits lattice operations:
 - $T_1 \preceq T_2$ iff ker $(T_2) \subseteq \text{ker}(T_1)$
 - $T_1 \wedge T_2 := \ker^{-1} \left(\ker(T_1) + \ker(T_2) \right)$

•
$$T_1 \lor T_2 := \ker^{-1} \left(\ker(T_1) \cap \ker(T_2) \right)$$

Fact

 $T_1 \wedge T_2$ computes minimal normal forms, e.g.,

Theorem

i. The kernel map induces a bijection between RO and subspaces of $\mathbb{K}G$:

$$\operatorname{ker}: \operatorname{\mathbf{RO}} \xrightarrow{\sim} \{\operatorname{subspaces of } \mathbb{K}G\}, \ T \mapsto \operatorname{ker}(T)$$

- ii. RO admits lattice operations:
 - $T_1 \preceq T_2$ iff ker $(T_2) \subseteq \text{ker}(T_1)$
 - $T_1 \wedge T_2 := \ker^{-1} \left(\ker(T_1) + \ker(T_2) \right)$

•
$$T_1 \lor T_2 := \ker^{-1} \left(\ker(T_1) \cap \ker(T_2) \right)$$

Fact

 $T_1 \wedge T_2$ computes minimal normal forms, e.g.,

Example

$$L = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \qquad R = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

• denote by $e_1 := yxx$, $e_2 := yxy$, $e_3 := yyx$, $e_4 := yyy$, so that

$$\operatorname{ker}(L) = \mathbb{K}\{\mathbf{e}_3 - \mathbf{e}_1, \quad \mathbf{e}_4 - \mathbf{e}_2\}, \qquad \operatorname{ker}(R) = \mathbb{K}\{\mathbf{e}_4 - \mathbf{e}_3\}$$

•
$$\ker(L \wedge R) = \mathbb{K}\{e_3 - e_1, e_4 - e_2, e_4 - e_3\}$$

 \rightsquigarrow by Gaussian elimination

$$\ker(L \wedge R) = \mathbb{K}\{e_2 - e_1, e_3 - e_1, e_4 - e_1\}$$

 \rightsquigarrow hence
$$L = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \qquad R = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

• denote by $e_1 := yxx$, $e_2 := yxy$, $e_3 := yyx$, $e_4 := yyy$, so that

$$\ker(L) = \mathbb{K}\{e_3 - e_1, e_4 - e_2\}, \ker(R) = \mathbb{K}\{e_4 - e_3\}$$

•
$$\ker(L \wedge R) = \mathbb{K}\{e_3 - e_1, e_4 - e_2, e_4 - e_3\}$$

 $\rightsquigarrow\,$ by Gaussian elimination

$$\ker(L \wedge R) = \mathbb{K}\{e_2 - e_1, e_3 - e_1, e_4 - e_1\}$$

 \rightsquigarrow hence

JKU, Institute for Algebra

$$L = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \qquad R = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

• denote by $e_1 := yxx$, $e_2 := yxy$, $e_3 := yyx$, $e_4 := yyy$, so that

$$\ker(L) = \mathbb{K}\{e_3 - e_1, e_4 - e_2\}, \ker(R) = \mathbb{K}\{e_4 - e_3\}$$

•
$$\ker(L \wedge R) = \mathbb{K}\{e_3 - e_1, e_4 - e_2, e_4 - e_3\}$$

 $\rightsquigarrow\,$ by Gaussian elimination

$$\ker(L \wedge R) = \mathbb{K}\{\mathbf{e}_2 - \mathbf{e}_1, \quad \mathbf{e}_3 - \mathbf{e}_1, \quad \mathbf{e}_4 - \mathbf{e}_1\}$$

 \rightsquigarrow hence

JKU, Institute for Algebra

Lemma: $\forall T_1, T_2 \in \mathbb{RO}$: $nf(T_1 \wedge T_2) \subseteq nf(T_1) \cap nf(T_2)$ more generally $\rightsquigarrow \forall F \subseteq \mathbb{RO}$: $nf(\wedge F) \subseteq nf(F)$

Remark: strict inclusion in general \rightsquigarrow denote by $obs(F) := nf(F) \setminus nf(\wedge F)$

Example:

▷ nf(L ∧ R) = K{yxx}
 ▷ nf(L) ∩ nf(R) = {yxx, yxy}
 ▷ obs(L, R) = {yxy}
 ▷ yxy is the "obstruction" to confluence!

Theorem

We have the following lattice characterisation of confluence:

 \rightarrow_F is confluent \iff obs $(F) = \emptyset$

C. Chenavier

JKU, Institute for Algebra

March 2, 2020 14 / 22

Lemma: $\forall T_1, T_2 \in \mathbb{RO}$: $nf(T_1 \wedge T_2) \subseteq nf(T_1) \cap nf(T_2)$ more generally $\rightsquigarrow \forall F \subseteq \mathbb{RO}$: $nf(\wedge F) \subseteq nf(F)$

Remark: strict inclusion in general \rightsquigarrow denote by $obs(F) := nf(F) \setminus nf(\wedge F)$

Example:

▷ nf(L ∧ R) = K{yxx}
 ▷ nf(L) ∩ nf(R) = {yxx, yxy}
 ▷ obs(L, R) = {yxy}
 ▷ yxy is the "obstruction" to confluence!

Theorem

We have the following lattice characterisation of confluence:

 \rightarrow_F is confluent \iff obs $(F) = \emptyset$

C. Chenavier

JKU, Institute for Algebra

March 2, 2020 14 / 22

Lemma: $\forall T_1, T_2 \in \mathbb{RO}$: $nf(T_1 \wedge T_2) \subseteq nf(T_1) \cap nf(T_2)$ more generally $\rightsquigarrow \forall F \subseteq \mathbb{RO}$: $nf(\wedge F) \subseteq nf(F)$

Remark: strict inclusion in general \rightsquigarrow denote by $obs(F) := nf(F) \setminus nf(\wedge F)$

Example:

▷ nf(L ∧ R) = K{yxx}
 ▷ nf(L) ∩ nf(R) = {yxx, yxy}
 ▷ obs(L, R) = {yxy}
 ▷ yxy is the "obstruction" to confluence!

Theorem

We have the following lattice characterisation of confluence:

 \rightarrow_F is confluent \iff obs $(F) = \emptyset$

~	-		
1		nen	aviei
· · ·	-		

JKU, Institute for Algebra

Lemma: $\forall T_1, T_2 \in \mathbb{RO}$: $nf(T_1 \wedge T_2) \subseteq nf(T_1) \cap nf(T_2)$ more generally $\rightsquigarrow \forall F \subseteq \mathbb{RO}$: $nf(\wedge F) \subseteq nf(F)$

Remark: strict inclusion in general \rightsquigarrow denote by $obs(F) := nf(F) \setminus nf(\wedge F)$

Example:

▷ nf(L ∧ R) = K{yxx}
 ▷ nf(L) ∩ nf(R) = {yxx, yxy}
 ▷ obs(L, R) = {yxy}
 ▷ yxy is the "obstruction" to confluence!

Theorem

We have the following lattice characterisation of confluence:

 \rightarrow_F is confluent \iff obs $(F) = \emptyset$

C. Chenavier

JKU, Institute for Algebra

March 2, 2020 14 / 22

$$C(P) = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Proposition: $F \subseteq \mathbf{RO}$ is completed by

$$\mathcal{C}(F)(g) := egin{cases} \wedge F(g), & ext{if } g \in ext{obs}(F) \ g, & ext{otherwise} \end{cases}$$

Theorem

We have the following lattice characterisation of completion: letting

$$\vee \overline{F} := \ker^{-1} \left(\bigcap_{T \in F} \operatorname{nf}(T) \right)$$
 and $C(F) := \wedge F \vee \left(\vee \overline{F} \right)$

$$C(P) = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Proposition: $F \subseteq \mathbf{RO}$ is completed by

$$\mathcal{C}(F)(g) := egin{cases} \wedge F(g), & ext{if } g \in ext{obs}(F) \ g, & ext{otherwise} \end{cases}$$

Theorem

We have the following lattice characterisation of completion: letting

$$end \overline{F} := \ker^{-1} \left(\bigcap_{T \in F} \operatorname{nf}(T) \right) \quad \text{and} \quad C(F) := \wedge F \lor \left(\lor \overline{F} \right)$$

$$C(P) = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Proposition: $F \subseteq \mathbf{RO}$ is completed by

$$\mathcal{C}(F)(g) := egin{cases} \wedge \mathsf{F}(\mathsf{g}), & ext{if } \mathsf{g} \in \mathsf{obs}(\mathsf{F}) \ g, & ext{otherwise} \end{cases}$$

Theorem

We have the following lattice characterisation of completion: letting

$$end \overline{F} := \ker^{-1} \left(\bigcap_{T \in F} \operatorname{nf}(T) \right) \quad \text{and} \quad C(F) := \wedge F \lor \left(\lor \overline{F} \right)$$

$$C(P) = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Proposition: $F \subseteq \mathbf{RO}$ is completed by

$$\mathcal{C}(F)(g) := egin{cases} \wedge F(g), & ext{if } g \in ext{obs}(F) \ g, & ext{otherwise} \end{cases}$$

Theorem

We have the following lattice characterisation of completion: letting

$$end \overline{F} := \ker^{-1} \left(\bigcap_{T \in F} \operatorname{nf}(T) \right) \quad \text{and} \quad C(F) := \wedge F \lor \left(\lor \overline{F} \right)$$

III. APPLICATIONS

Problems involving syzygy computations:

Completion procedures: remove useless reductions/critical pairs

Higher-dimensional algebra: compute homological/homotopical invariants

Standardisation problems: choose a standard rew. path (e.g., Janet bases)

Syzygies for R.O.

Fixed $F = \{T_1, \cdots, T_n\} \subseteq \mathbf{RO}$

Definition: the space of syzygies of F is the kernel of

 $\ker(T_1)\times\cdots\times\ker(T_n)\to\mathbb{K}G,\quad (v_1,\cdots,v_n)\mapsto v_1+\cdots+v_n$

Proposition: letting $F_i := \{T_1, \dots, T_i\}$, there is a short exact sequence

 $0 \rightarrow \mathsf{syz}(F_{i-1}) \rightarrow \mathsf{syz}(F_i) \rightarrow \mathsf{syz}(\land F_{i-1}, T_i) \rightarrow 0$

Moreover, $\forall T, T' \in \mathbf{RO}$: $syz(T, T') \simeq ker(T \lor T')$

Consequence: a linear basis of syz(F) may by constructed by induction using

$$\operatorname{syz}(F_i) \simeq \operatorname{syz}(F_{i-1}) \oplus \ker \left((\wedge F_{i-1}) \lor T_i \right)$$

Problems involving syzygy computations:

Completion procedures: remove useless reductions/critical pairs

Higher-dimensional algebra: compute homological/homotopical invariants

Standardisation problems: choose a standard rew. path (e.g., Janet bases)

Syzygies for R.O.

Fixed $F = \{T_1, \cdots, T_n\} \subseteq \mathbf{RO}$

Definition: the space of syzygies of F is the kernel of

 $\ker(T_1)\times\cdots\times\ker(T_n)\to\mathbb{K}G,\quad (v_1,\cdots,v_n)\mapsto v_1+\cdots+v_n$

Proposition: letting $F_i := \{T_1, \dots, T_i\}$, there is a short exact sequence

 $0 \rightarrow \mathsf{syz}(F_{i-1}) \rightarrow \mathsf{syz}(F_i) \rightarrow \mathsf{syz}(\land F_{i-1}, T_i) \rightarrow 0$

Moreover, $\forall T, T' \in \mathbf{RO}$: $syz(T, T') \simeq ker(T \lor T')$

Consequence: a linear basis of syz(F) may by constructed by induction using

$$\operatorname{syz}(F_i) \simeq \operatorname{syz}(F_{i-1}) \oplus \ker \left((\wedge F_{i-1}) \lor T_i \right)$$

- $G := \{g_1 < \cdots < g_5\}$
- $F := \{T_1, \cdots, T_5\}$

Basis of syzygies: syz(F) is 2-dimensional

ker(T₁ ∨ T₂) has one basis element

$$g_5 - g_3 = g_5 - T_1(g_5) = (g_5 - T_2(g_5)) - (g_3 - T_2(g_3))$$

• ker $((\wedge F_4) \vee T_5)$ has one basis element

$$g_4 - g_1 = (g_4 - T_4(g_4)) + (g_5 - T_3(g_5)) - (g_5 - T_1(g_5)) = g_4 - T_5(g_4)$$

- $G := \{g_1 < \cdots < g_5\}$
- $F := \{T_1, \cdots, T_5\}$

Basis of syzygies: syz(F) is 2-dimensional

ker(T₁ ∨ T₂) has one basis element

$$g_5 - g_3 = g_5 - T_1(g_5) = (g_5 - T_2(g_5)) - (g_3 - T_2(g_3))$$

• ker $((\wedge F_4) \vee T_5)$ has one basis element

$$g_4 - g_1 = (g_4 - T_4(g_4)) + (g_5 - T_3(g_5)) - (g_5 - T_1(g_5)) = g_4 - T_5(g_4)$$

- $G := \{g_1 < \cdots < g_5\}$
- $F := \{T_1, \cdots, T_5\}$

Basis of syzygies: syz(F) is 2-dimensional

ker(T₁ ∨ T₂) has one basis element

$$g_5 - g_3 = g_5 - T_1(g_5) = (g_5 - T_2(g_5)) - (g_3 - T_2(g_3))$$

• ker $((\wedge F_4) \vee T_5)$ has one basis element

$$g_4 - g_1 = (g_4 - T_4(g_4)) + (g_5 - T_3(g_5)) - (g_5 - T_1(g_5)) = g_4 - T_5(g_4)$$

- $G := \{g_1 < \cdots < g_5\}$
- $F := \{T_1, \cdots, T_5\}$

Basis of syzygies: syz(F) is 2-dimensional

ker(T₁ ∨ T₂) has one basis element

$$g_5 - g_3 = g_5 - T_1(g_5) = (g_5 - T_2(g_5)) - (g_3 - T_2(g_3))$$

• ker $((\wedge F_4) \vee T_5)$ has one basis element

 $g_4 - g_1 = (g_4 - T_4(g_4)) + (g_5 - T_3(g_5)) - (g_5 - T_1(g_5)) = g_4 - T_5(g_4)$

- $G := \{g_1 < \cdots < g_5\}$
- $F := \{T_1, \cdots, T_5\}$

Basis of syzygies: syz(F) is 2-dimensional

ker(T₁ ∨ T₂) has one basis element

$$g_5 - g_3 = g_5 - T_1(g_5) = (g_5 - T_2(g_5)) - (g_3 - T_2(g_3))$$

• ker $((\wedge F_4) \vee T_5)$ has one basis element

$$g_4 - g_1 = (g_4 - T_4(g_4)) + (g_5 - T_3(g_5)) - (g_5 - T_1(g_5)) = g_4 - T_5(g_4)$$

- $G := \{g_1 < \cdots < g_5\}$
- $F := \{T_1, \cdots, T_5\}$

Basis of syzygies: syz(F) is 2-dimensional

• ker($T_1 \lor T_2$) has one basis element

$$g_5 - g_3 = g_5 - T_1(g_5) = (g_5 - T_2(g_5)) - (g_3 - T_2(g_3))$$

• ker $((\wedge F_4) \vee T_5)$ has one basis element

$$g_4 - g_1 = (g_4 - T_4(g_4)) + (g_5 - T_3(g_5)) - (g_5 - T_1(g_5)) = g_4 - T_5(g_4)$$

- $G := \{g_1 < \cdots < g_5\}$
- $F := \{T_1, \cdots, T_5\}$

Basis of syzygies: syz(F) is 2-dimensional

• ker($T_1 \lor T_2$) has one basis element

$$g_5 - g_3 = g_5 - T_1(g_5) = (g_5 - T_2(g_5)) - (g_3 - T_2(g_3))$$

• ker $((\wedge F_4) \vee T_5)$ has one basis element

$$g_4 - g_1 = (g_4 - T_4(g_4)) + (g_5 - T_3(g_5)) - (g_5 - T_1(g_5)) = g_4 - T_5(g_4)$$

- $G := \{g_1 < \cdots < g_5\}$
- $F := \{T_1, \cdots, T_5\}$

Basis of syzygies: syz(F) is 2-dimensional

• ker($T_1 \lor T_2$) has one basis element

$$g_5 - g_3 = g_5 - T_1(g_5) = (g_5 - T_2(g_5)) - (g_3 - T_2(g_3))$$

• ker $((\wedge F_4) \vee T_5)$ has one basis element

$$g_4 - g_1 = (g_4 - T_4(g_4)) + (g_5 - T_3(g_5)) - (g_5 - T_1(g_5)) = g_4 - T_5(g_4)$$

- $G := \{g_1 < \cdots < g_5\}$
- $F := \{T_1, \cdots, T_5\}$

Basis of syzygies: syz(F) is 2-dimensional

ker(T₁ ∨ T₂) has one basis element

$$g_5 - g_3 = g_5 - T_1(g_5) = (g_5 - T_2(g_5)) - (g_3 - T_2(g_3))$$

• ker $((\wedge F_4) \vee T_5)$ has one basis element

$$g_4 - g_1 = (g_4 - T_4(g_4)) + (g_5 - T_3(g_5)) - (g_5 - T_1(g_5)) = g_4 - T_5(g_4)$$

Free resolutions: consider an associative unital $\mathbb K\text{-algebra}\ A$

- higher syzygies \rightsquigarrow homological invariants of **A**
- computing invariants requires to construct free resolutions, *i.e.*,

$$\cdots \xrightarrow{\partial_{n+1}} \mathbf{F}_n \xrightarrow{\partial_n} \mathbf{F}_{n-1} \xrightarrow{\partial_{n-1}} \cdots \xrightarrow{\partial_2} \mathbf{F}_1 \xrightarrow{\partial_1} \mathbf{F}_0 \xrightarrow{\epsilon} \mathbb{K} \longrightarrow \mathbf{0}$$

where \mathbf{F}_n are free modules and $im(\partial_{n+1}) = ker(\partial_n)$

Tke Koszul complex: assume **A** is homogeneous, *i.e.*, $\mathbf{A} = \mathbb{K}\langle X \mid R \rangle$, $R \subseteq \mathbb{K}X^{(N)}$

• a candidate: the Koszul complex $\rightsquigarrow \mathbf{F}_n = \mathbf{A} \otimes J_n$, where

$$J_0 = \mathbb{K}, \quad J_1 = \mathbb{K}X, \quad J_2 = \mathbb{K}R, \quad J_3 = \Big(\mathbb{K}R \otimes \mathbb{K}X\Big) \cap \Big(\mathbb{K}X \otimes \mathbb{K}R\Big), \cdots$$

• when $(\mathbf{A} \otimes J_{\bullet}, \partial_{\bullet})$ is a resolution, it is minimal, *i.e.*, $\operatorname{Tor}_{\bullet}^{\mathbf{A}}(\mathbb{K}, \mathbb{K}) = J_{\bullet}$

A criterion [Berger, 2001]

Free resolutions: consider an associative unital $\mathbb K\text{-algebra}\ A$

- higher syzygies ~> homological invariants of A
- computing invariants requires to construct free resolutions, *i.e.*,

$$\cdots \xrightarrow{\partial_{n+1}} \mathbf{F}_n \xrightarrow{\partial_n} \mathbf{F}_{n-1} \xrightarrow{\partial_{n-1}} \cdots \xrightarrow{\partial_2} \mathbf{F}_1 \xrightarrow{\partial_1} \mathbf{F}_0 \xrightarrow{\epsilon} \mathbb{K} \longrightarrow 0$$

where \mathbf{F}_n are free modules and $im(\partial_{n+1}) = ker(\partial_n)$

Tke Koszul complex: assume **A** is homogeneous, *i.e.*, $\mathbf{A} = \mathbb{K}\langle X \mid R \rangle$, $R \subseteq \mathbb{K}X^{(N)}$

• a candidate: the Koszul complex $\rightsquigarrow \mathbf{F}_n = \mathbf{A} \otimes J_n$, where

$$J_0 = \mathbb{K}, \quad J_1 = \mathbb{K}X, \quad J_2 = \mathbb{K}R, \quad J_3 = \Big(\mathbb{K}R \otimes \mathbb{K}X\Big) \cap \Big(\mathbb{K}X \otimes \mathbb{K}R\Big), \cdots$$

• when $(\mathbf{A} \otimes J_{\bullet}, \partial_{\bullet})$ is a resolution, it is minimal, *i.e.*, $\operatorname{Tor}_{\bullet}^{\mathbf{A}}(\mathbb{K}, \mathbb{K}) = J_{\bullet}$

A criterion [Berger, 2001]

Free resolutions: consider an associative unital \mathbb{K} -algebra A

- higher syzygies ~> homological invariants of A
- computing invariants requires to construct free resolutions, i.e.,

 $\cdots \xrightarrow{\partial_{n+1}} \mathbf{F}_n \xrightarrow{\partial_n} \mathbf{F}_{n-1} \xrightarrow{\partial_{n-1}} \cdots \xrightarrow{\partial_2} \mathbf{F}_1 \xrightarrow{\partial_1} \mathbf{F}_0 \xrightarrow{\epsilon} \mathbb{K} \longrightarrow 0$

where \mathbf{F}_n are free modules and $im(\partial_{n+1}) = ker(\partial_n)$

Tke Koszul complex: assume **A** is homogeneous, *i.e.*, $\mathbf{A} = \mathbb{K}\langle X \mid R \rangle$, $R \subseteq \mathbb{K}X^{(N)}$

• a candidate: the Koszul complex $\rightsquigarrow \mathbf{F}_n = \mathbf{A} \otimes J_n$, where

$$J_0 = \mathbb{K}, \quad J_1 = \mathbb{K}X, \quad J_2 = \mathbb{K}R, \quad J_3 = \left(\mathbb{K}R \otimes \mathbb{K}X\right) \cap \left(\mathbb{K}X \otimes \mathbb{K}R\right), \cdots$$

• when $(\mathbf{A} \otimes J_{\bullet}, \partial_{\bullet})$ is a resolution, it is minimal, *i.e.*, $\operatorname{Tor}_{\bullet}^{\mathbf{A}}(\mathbb{K}, \mathbb{K}) = J_{\bullet}$

A criterion [Berger, 2001]

Free resolutions: consider an associative unital $\mathbb K\text{-algebra}\ A$

- higher syzygies \rightsquigarrow homological invariants of **A**
- computing invariants requires to construct free resolutions, *i.e.*,

$$\cdots \xrightarrow{\partial_{n+1}} \mathbf{F}_n \xrightarrow{\partial_n} \mathbf{F}_{n-1} \xrightarrow{\partial_{n-1}} \cdots \xrightarrow{\partial_2} \mathbf{F}_1 \xrightarrow{\partial_1} \mathbf{F}_0 \xrightarrow{\epsilon} \mathbb{K} \longrightarrow \mathbf{0}$$

where \mathbf{F}_n are free modules and $im(\partial_{n+1}) = ker(\partial_n)$

Tke Koszul complex: assume **A** is homogeneous, *i.e.*, $\mathbf{A} = \mathbb{K}\langle X \mid R \rangle$, $R \subseteq \mathbb{K}X^{(N)}$

• a candidate: the Koszul complex $\rightsquigarrow \mathbf{F}_n = \mathbf{A} \otimes J_n$, where

$$J_0 = \mathbb{K}, \quad J_1 = \mathbb{K}X, \quad J_2 = \mathbb{K}R, \quad J_3 = \left(\mathbb{K}R \otimes \mathbb{K}X\right) \cap \left(\mathbb{K}X \otimes \mathbb{K}R\right), \cdots$$

• when $(\mathbf{A} \otimes J_{\bullet}, \partial_{\bullet})$ is a resolution, it is minimal, *i.e.*, $\operatorname{Tor}_{\bullet}^{\mathbf{A}}(\mathbb{K}, \mathbb{K}) = J_{\bullet}$

A criterion [Berger, 2001]

Free resolutions: consider an associative unital $\mathbb K\text{-algebra}\ A$

- higher syzygies \rightsquigarrow homological invariants of **A**
- computing invariants requires to construct free resolutions, *i.e.*,

$$\cdots \xrightarrow{\partial_{n+1}} \mathbf{F}_n \xrightarrow{\partial_n} \mathbf{F}_{n-1} \xrightarrow{\partial_{n-1}} \cdots \xrightarrow{\partial_2} \mathbf{F}_1 \xrightarrow{\partial_1} \mathbf{F}_0 \xrightarrow{\epsilon} \mathbb{K} \longrightarrow 0$$

where \mathbf{F}_n are free modules and $im(\partial_{n+1}) = ker(\partial_n)$

Tke Koszul complex: assume **A** is homogeneous, *i.e.*, $\mathbf{A} = \mathbb{K}\langle X \mid R \rangle$, $R \subseteq \mathbb{K}X^{(N)}$

• a candidate: the Koszul complex \rightsquigarrow $\mathbf{F}_n = \mathbf{A} \otimes J_n$, where

$$J_0 = \mathbb{K}, \quad J_1 = \mathbb{K}X, \quad J_2 = \mathbb{K}R, \quad J_3 = \Big(\mathbb{K}R \otimes \mathbb{K}X\Big) \cap \Big(\mathbb{K}X \otimes \mathbb{K}R\Big), \cdots$$

• when $(\mathbf{A} \otimes J_{\bullet}, \partial_{\bullet})$ is a resolution, it is minimal, *i.e.*, $\operatorname{Tor}_{\bullet}^{\mathbf{A}}(\mathbb{K}, \mathbb{K}) = J_{\bullet}$

A criterion [Berger, 2001]

Free resolutions: consider an associative unital $\mathbb K\text{-algebra}\ A$

- higher syzygies \rightsquigarrow homological invariants of **A**
- computing invariants requires to construct free resolutions, *i.e.*,

$$\cdots \xrightarrow{\partial_{n+1}} \mathbf{F}_n \xrightarrow{\partial_n} \mathbf{F}_{n-1} \xrightarrow{\partial_{n-1}} \cdots \xrightarrow{\partial_2} \mathbf{F}_1 \xrightarrow{\partial_1} \mathbf{F}_0 \xrightarrow{\epsilon} \mathbb{K} \longrightarrow \mathbf{0}$$

where \mathbf{F}_n are free modules and $im(\partial_{n+1}) = ker(\partial_n)$

Tke Koszul complex: assume **A** is homogeneous, *i.e.*, $\mathbf{A} = \mathbb{K}\langle X \mid R \rangle$, $R \subseteq \mathbb{K}X^{(N)}$

• a candidate: the Koszul complex \rightsquigarrow $\mathbf{F}_n = \mathbf{A} \otimes J_n$, where

$$J_0 = \mathbb{K}, \quad J_1 = \mathbb{K}X, \quad J_2 = \mathbb{K}R, \quad J_3 = \Big(\mathbb{K}R \otimes \mathbb{K}X\Big) \cap \Big(\mathbb{K}X \otimes \mathbb{K}R\Big), \cdots$$

• when $(\mathbf{A} \otimes J_{\bullet}, \partial_{\bullet})$ is a resolution, it is minimal, *i.e.*, $\operatorname{Tor}_{\bullet}^{\mathbf{A}}(\mathbb{K}, \mathbb{K}) = J_{\bullet}$

A criterion [Berger, 2001]

Free resolutions: consider an associative unital $\mathbb K\text{-algebra}\ A$

- higher syzygies \rightsquigarrow homological invariants of **A**
- computing invariants requires to construct free resolutions, *i.e.*,

$$\cdots \xrightarrow{\partial_{n+1}} \mathbf{F}_n \xrightarrow{\partial_n} \mathbf{F}_{n-1} \xrightarrow{\partial_{n-1}} \cdots \xrightarrow{\partial_2} \mathbf{F}_1 \xrightarrow{\partial_1} \mathbf{F}_0 \xrightarrow{\epsilon} \mathbb{K} \longrightarrow 0$$

where \mathbf{F}_n are free modules and $im(\partial_{n+1}) = ker(\partial_n)$

Tke Koszul complex: assume **A** is homogeneous, *i.e.*, $\mathbf{A} = \mathbb{K}\langle X \mid R \rangle$, $R \subseteq \mathbb{K}X^{(N)}$

• a candidate: the Koszul complex $\rightsquigarrow \mathbf{F}_n = \mathbf{A} \otimes J_n$, where

$$J_0 = \mathbb{K}, \quad J_1 = \mathbb{K}X, \quad J_2 = \mathbb{K}R, \quad J_3 = \Big(\mathbb{K}R \otimes \mathbb{K}X\Big) \cap \Big(\mathbb{K}X \otimes \mathbb{K}R\Big), \cdots$$

• when $(\mathbf{A} \otimes J_{\bullet}, \partial_{\bullet})$ is a resolution, it is minimal, *i.e.*, $\operatorname{Tor}_{\bullet}^{\mathbf{A}}(\mathbb{K}, \mathbb{K}) = J_{\bullet}$

A criterion [Berger, 2001]

Objective: constructive proof of Berger's criterion through a contracting homotopy

$$\rightarrow h_n : \mathbf{A} \otimes J_n \to \mathbf{A} \otimes J_{n+1} \quad \text{s.t.} \quad \partial_n h_{n+1} + h_n \partial_{n-1} = \mathrm{id}_{\mathbf{A} \otimes J_n}$$

 $\Rightarrow \operatorname{ker}(\partial_{n-1}) = \operatorname{im}(\partial_n)$

Construction: given $\mathbf{A} = \mathbb{K}\langle X \mid R \rangle$ homogeneous and \langle a monomial order

- $S := \ker^{-1}(\mathbb{K}R) \in \operatorname{RO}(X^*, <)$
- $T_1^n, T_2^n \quad \rightsquigarrow \quad \text{formulas using } S \text{ and lattice operations}$
- $h_n: \mathbf{A} \otimes J_n \to \mathbf{A} \otimes J_{n+1} \quad \rightsquigarrow \quad \text{polynomial in } (T_1^n, T_2^n)$

The family $(h_n)_n$ is called the left bound of $\langle X | R \rangle$

Proposition: if $\langle X | R \rangle$ is side-confluent iff the reduction relations hold Moreover, the extra-condition implies the reduction relations

Theorem

Objective: constructive proof of Berger's criterion through a contracting homotopy

$$\rightarrow h_n : \mathbf{A} \otimes J_n \to \mathbf{A} \otimes J_{n+1} \quad \text{s.t.} \quad \partial_n h_{n+1} + h_n \partial_{n-1} = \mathrm{id}_{\mathbf{A} \otimes J_n}$$

 $\Rightarrow \operatorname{ker}(\partial_{n-1}) = \operatorname{im}(\partial_n)$

Construction: given $\mathbf{A} = \mathbb{K}\langle X \mid R \rangle$ homogeneous and \langle a monomial order

- $S := \ker^{-1}(\mathbb{K}R) \in \mathbf{RO}(X^*, <)$
- $T_1^n, T_2^n \quad \rightsquigarrow \quad \text{formulas using } S \text{ and lattice operations}$
- $h_n: \mathbf{A} \otimes J_n \to \mathbf{A} \otimes J_{n+1} \quad \rightsquigarrow \quad \text{polynomial in } (T_1^n, T_2^n)$

The family $(h_n)_n$ is called the left bound of $\langle X | R \rangle$

Proposition: if $\langle X | R \rangle$ is side-confluent iff the reduction relations hold Moreover, the extra-condition implies the reduction relations

Theorem

Objective: constructive proof of Berger's criterion through a contracting homotopy

Construction: given $\mathbf{A} = \mathbb{K} \langle X \mid R \rangle$ homogeneous and \langle a monomial order

- $S := \ker^{-1}(\mathbb{K}R) \in \mathbf{RO}(X^*, <)$
- $T_1^n, T_2^n \quad \rightsquigarrow \quad \text{formulas using } S \text{ and lattice operations}$
- $h_n: \mathbf{A} \otimes J_n \to \mathbf{A} \otimes J_{n+1} \quad \rightsquigarrow \quad \text{polynomial in } (T_1^n, T_2^n)$

The family $(h_n)_n$ is called the left bound of $\langle X | R \rangle$

Proposition: if $\langle X | R \rangle$ is side-confluent iff the reduction relations hold Moreover, the extra-condition implies the reduction relations

Theorem

Objective: constructive proof of Berger's criterion through a contracting homotopy

Construction: given $\mathbf{A} = \mathbb{K} \langle X \mid R \rangle$ homogeneous and \langle a monomial order

- $S := \ker^{-1}(\mathbb{K}R) \in \mathbf{RO}(X^*, <)$
- $T_1^n, T_2^n \quad \rightsquigarrow \quad \text{formulas using } S \text{ and lattice operations}$
- $h_n : \mathbf{A} \otimes J_n \to \mathbf{A} \otimes J_{n+1} \quad \rightsquigarrow \quad \text{polynomial in } (T_1^n, T_2^n)$

The family $(h_n)_n$ is called the left bound of $\langle X | R \rangle$

Proposition: if $\langle X | R \rangle$ is side-confluent iff the reduction relations hold Moreover, the extra-condition implies the reduction relations

Theorem

Objective: constructive proof of Berger's criterion through a contracting homotopy

Construction: given $\mathbf{A} = \mathbb{K}\langle X \mid R \rangle$ homogeneous and $\langle a \rangle$ monomial order

- $S := \ker^{-1}(\mathbb{K}R) \in \operatorname{RO}(X^*, <)$
- $T_1^n, T_2^n \quad \rightsquigarrow \quad \text{formulas using } S \text{ and lattice operations}$
- $h_n: \mathbf{A} \otimes J_n \to \mathbf{A} \otimes J_{n+1} \quad \rightsquigarrow \quad \text{polynomial in } (T_1^n, T_2^n)$

The family $(h_n)_n$ is called the left bound of $\langle X | R \rangle$

Proposition: if $\langle X | R \rangle$ is side-confluent iff the reduction relations hold Moreover, the extra-condition implies the reduction relations

Theorem

Objective: constructive proof of Berger's criterion through a contracting homotopy

Construction: given $\mathbf{A} = \mathbb{K} \langle X \mid R \rangle$ homogeneous and $\langle A \mid R \rangle$ a monomial order

- $S := \ker^{-1}(\mathbb{K}R) \in \operatorname{RO}(X^*, <)$
- $T_1^n, T_2^n \quad \rightsquigarrow \quad \text{formulas using } S \text{ and lattice operations}$
- $h_n: \mathbf{A} \otimes J_n \to \mathbf{A} \otimes J_{n+1} \quad \rightsquigarrow \quad \text{polynomial in } (T_1^n, T_2^n)$

The family $(h_n)_n$ is called the left bound of $\langle X | R \rangle$

Proposition: if $\langle X | R \rangle$ is side-confluent iff the reduction relations hold Moreover, the extra-condition implies the reduction relations

Theorem

Objective: constructive proof of Berger's criterion through a contracting homotopy

Construction: given $\mathbf{A} = \mathbb{K} \langle X \mid R \rangle$ homogeneous and $\langle A \mid R \rangle$ a monomial order

- $S := \ker^{-1}(\mathbb{K}R) \in \operatorname{RO}(X^*, <)$
- $T_1^n, T_2^n \quad \rightsquigarrow \quad \text{formulas using } S \text{ and lattice operations}$
- $h_n: \mathbf{A} \otimes J_n \to \mathbf{A} \otimes J_{n+1} \quad \rightsquigarrow \quad \text{polynomial in } (T_1^n, T_2^n)$

The family $(h_n)_n$ is called the left bound of $\langle X | R \rangle$

Proposition: if $\langle X | R \rangle$ is side-confluent iff the reduction relations hold Moreover, the extra-condition implies the reduction relations

Theorem

IV. CONCLUSION

Summary

Summary of presented results:

- lattice descriptions of confluence and completion
- lattice computation of syzygies
- construction of a contracting homotopy for the Koszul complex

Related results:

- lattice formulation of the noncommutative F_4 algorithm
- lattice classification of quotients of the magmatic operad
- representation theory of topological rew. systems applied to formal power series

THANK YOU FOUR LISTENING!

Summary

Summary of presented results:

- lattice descriptions of confluence and completion
- lattice computation of syzygies
- construction of a contracting homotopy for the Koszul complex

Related results:

- lattice formulation of the noncommutative F_4 algorithm
- lattice classification of quotients of the magmatic operad
- representation theory of topological rew. systems applied to formal power series

THANK YOU FOUR LISTENING!