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Motivations Algebraic structures presented by oriented relations

Rewriting theory and computational problems in algebra

Computational problems in algebra: t

• how to compute linear bases for K-algebras?

• solve decision problems, formal analysis of functional systems, computation of
algebraic invariants, prove operator identities, . . .

Rewriting theory: orientation of relations

• notion of normal forms  "simple" representatives of congruence classes

Example: the polynomial algebra over two indeterminates

K[x , y ] = K〈x , y | yx − xy〉: noncommutative polynomials modulo yx − xy ≡ 0

• chosen orientation: yx → xy

• a NF computation: 3 yxx + xyx − xy → 4 xyx − xy → 4 xxy − xy

In this case: NF monomials xnym form a basis of K[x , y ]
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Motivations Algebraic structures presented by oriented relations

Questions

Given A = K〈X | R〉 presented by generators and oriented relations

do NF monomials form a linear basis of A?

Equivalently:

• do NF monomials form a generating family of A?

• do NF monomials form a free family in A?
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Motivations Termination

Normalisation

Example: K〈x | xx − x〉 has basis {1, x}

• chosen orientation: x → xx  1 is the only NF monomial

• in general: NF monomials do not form a generating family

Definition: an orientation is terminating if there is no infinite rew. sequence

f1 → f2 → · · · → fn → fn+1 → · · ·

Counterexample: x → xx and fn = xn

Fact

If → is a terminating, then NF monomials form a generating family
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Motivations Confluence

Deterministic computations

Example: K〈x , y | yy − yx〉 chosen orientation: yy → yx

• yxy = yxx  NF monomials do not form a free family
yyy

yxy yyx

yxx

Definition: an orientation is confluent if
.

f g

.

∗∗

∗ ∗

Fact

If → is confluent, NF monomials form free family
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Motivations Gröbner bases and reduction operators

Algebraic characterisations of confluence

Let I be a (non)commutative polynomial ideal, R ⊆ I and < a monomial order

Definition: R is a (non)commutative Gröbner basis of I if lm(R) generates lm(I)

Rew. interpretation: {lm(g)→ r(g) : g ∈ R} is a confluent orientation

Illustration: f ∈ I iff f ∗→R 0  independent of the rew. path!

Reduction operators: representation theory of rew. systems

• formalisation of noncommutative GB [Bergman 78]

• lattice characterisation of quadratic GB applied to Koszul duality [Berger 98]

Objectives of the talk

Extend the functional approach

• lattice characterisation of the confluence property (for abstract linear rew. systems)
• lattice interpretation of completion
• applications to computation of syzygies and Koszul duality
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Reduction operators Plan

II. REDUCTION OPERATORS
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Reduction operators Reduction operators for quadratic S.R.S.

Functional representations of rew. strategies

Example: yy → yx  left/right-reduction operators on 3 letter words

yyy

yxy yyx

yxx

L R

L

Properties of R.O.: L and R are functions that are

• endomorphisms of G := {3 letter words}

• projectors, i.e., T 2 = T

• not increasing w.r.t. <deglex, i.e.,

∀g ∈ G : T (g) = g or T (g) <deglex g

Remark: a S.R.S. can be embedded in a rew. system on noncommutative polynomials
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Reduction operators Definition of R.O. and matrix representation

Reduction operators

Fixed: a well-ordered set (G, <), e.g.,

• noncommutative algebras: G  words, < monomial order

• matrices: G  a finite basis, < a rank on basis elements

Definition: a reduction operator relative to (KG, <) is a linear projector of KG s.t.

∀g ∈ G : T (g) = g or T (g) < g

Matrix representation for homogeneous algebras

For the rew. rule yy → yx : L/R are left/right R.O. on

K{yxx , yxy , yyx , yyy}

Matrix representation in the basis yxx < yxy < yyx < yyy :

L =

(1 0 1 0
0 1 0 1
0 0 0 0
0 0 0 0

)
, R =

(1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 0

)
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Reduction operators Lattice Structure

Theorem

i. The kernel map induces a bijection between RO and subspaces of KG:

ker : RO ∼−→ {subspaces of KG}, T 7→ ker(T )

ii. RO admits lattice operations:

• T1 � T2 iff ker(T2) ⊆ ker(T1)

• T1 ∧ T2 := ker−1
(

ker(T1) + ker(T2)
)

• T1 ∨ T2 := ker−1 (ker(T1) ∩ ker(T2))

Fact

T1 ∧ T2 computes minimal normal forms, e.g.,

yyy

yxy yyx

yxx

T1=L T2=R

T1=L
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Reduction operators Lattice Structure

Example

L =

(1 0 1 0
0 1 0 1
0 0 0 0
0 0 0 0

)
, R =

(1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 0

)

• denote by e1 := yxx , e2 := yxy , e3 := yyx , e4 := yyy , so that

ker(L) = K{e3 − e1, e4 − e2}, ker(R) = K{e4 − e3}

• ker(L ∧ R) = K{e3 − e1, e4 − e2, e4 − e3}

 by Gaussian elimination

ker(L ∧ R) = K{e2 − e1, e3 − e1, e4 − e1}

 hence

L ∧ R =

1 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0
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Reduction operators Confluence

Obstructions to confluence

Lemma: ∀T1, T2 ∈ RO : nf(T1 ∧ T2) ⊆ nf(T1) ∩ nf(T2)

more generally  ∀F ⊆ RO : nf(∧F ) ⊆ nf(F )

Remark: strict inclusion in general  denote by obs(F ) := nf(F ) \ nf(∧F )

Example: t
yyy

yxy yyx

yxx

L R

L

. nf(L ∧ R) = K{yxx}

. nf(L) ∩ nf(R) = {yxx , yxy}

. obs(L, R) = {yxy}

. yxy is the "obstruction" to confluence!

Theorem

We have the following lattice characterisation of confluence:

→F is confluent⇐⇒ obs(F ) = ∅
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Reduction operators Completion

Example: P := (L, R) is completed by C(P)

yyy

yxy yyx

yxx

L R

L

C(P) =

(1 1 0 0
0 0 0 0
0 0 1 0
0 0 0 1

)

Proposition: F ⊆ RO is completed by

C(F )(g) :=

{
∧F (g), if g ∈ obs(F )

g , otherwise

Theorem

We have the following lattice characterisation of completion: letting

∨F := ker−1
(⋂

T∈F

nf(T )

)
and C(F ) := ∧F ∨

(
∨F
)

the set F ∪ {C(F )} is confluent
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Applications Plan

III. APPLICATIONS
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Applications Lattice operations and basis of syzygies

Problems involving syzygy computations: t
Completion procedures: remove useless reductions/critical pairs

Higher-dimensional algebra: compute homological/homotopical invariants

Standardisation problems: choose a standard rew. path (e.g., Janet bases)

Syzygies for R.O.

Fixed F = {T1, · · · , Tn} ⊆ RO

Definition: the space of syzygies of F is the kernel of

ker(T1)× · · · × ker(Tn)→ KG, (v1, · · · , vn) 7→ v1 + · · ·+ vn

Proposition: letting Fi := {T1, · · · , Ti}, there is a short exact sequence

0→ syz(Fi−1)→ syz(Fi )→ syz(∧Fi−1, Ti )→ 0

Moreover, ∀T , T ′ ∈ RO : syz(T , T ′) ' ker(T ∨ T ′)

Consequence: a linear basis of syz(F ) may by constructed by induction using

syz(Fi ) ' syz(Fi−1)⊕ ker
(

(∧Fi−1) ∨ Ti
)
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Applications Lattice operations and basis of syzygies

Example

g5

g3 g2 g1

g4

T1 T3
T2

T2

T4 T5

• G := {g1 < · · · < g5}

• F := {T1, · · · , T5}

Basis of syzygies: syz(F ) is 2-dimensional t

• ker(T1 ∨ T2) has one basis element

g5 − g3 = g5 − T1(g5) = (g5 − T2(g5))− (g3 − T2(g3))

• ker((∧F4) ∨ T5) has one basis element

g4 − g1 = (g4 − T4(g4)) + (g5 − T3(g5))− (g5 − T1(g5)) = g4 − T5(g4)

Remark: useless reductions are of the form g → Ti (g), where g /∈ ker((∧Fi−1) ∨ Ti )
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Applications A contracting homotopy for the Koszul complex

Effective homological algebra

Free resolutions: consider an associative unital K-algebra A

• higher syzygies  homological invariants of A

• computing invariants requires to construct free resolutions, i.e.,

· · · Fn Fn−1 · · · F1 F0 K 0
∂n+1 ∂n ∂n−1 ∂2 ∂1 ε

where Fn are free modules and im(∂n+1) = ker(∂n)

Tke Koszul complex: assume A is homogeneous, i.e., A = K〈X | R〉, R ⊆ KX (N)

• a candidate: the Koszul complex  Fn = A⊗ Jn, where

J0 = K, J1 = KX , J2 = KR, J3 =
(
KR ⊗ KX

)
∩
(
KX ⊗ KR

)
, · · ·

• when (A⊗ J•, ∂•) is a resolution, it is minimal, i.e., TorA• (K,K) = J•

A criterion [Berger, 2001]

extra-condition and side-confluent presentation =⇒ (A⊗ J•, ∂•) is a resolution
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Applications A contracting homotopy for the Koszul complex

A constructive proof of the Berger’s criterion

Objective: constructive proof of Berger’s criterion through a contracting homotopy
 hn : A⊗ Jn → A⊗ Jn+1 s.t. ∂nhn+1 + hn∂n−1 = idA⊗Jn

⇒ ker(∂n−1) = im(∂n)

Construction: given A = K〈X | R〉 homogeneous and < a monomial order

• S := ker−1(KR) ∈ RO(X∗, <)

• T n
1 , T n

2  formulas using S and lattice operations

• hn : A⊗ Jn → A⊗ Jn+1  polynomial in (T n
1 , T n

2 )

The family (hn)n is called the left bound of 〈X | R〉

Proposition: if 〈X | R〉 is side-confluent iff the reduction relations hold
Moreover, the extra-condition implies the reduction relations

Theorem

Let A be an homogeneous algebra satisfying the extra-condition and admitting a side-confluent
presentation 〈X | R〉. Then, the left bound of 〈X | R〉 is a contracting homotopy for the Koszul
complex of A
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• T n
1 , T n

2  formulas using S and lattice operations

• hn : A⊗ Jn → A⊗ Jn+1  polynomial in (T n
1 , T n

2 )

The family (hn)n is called the left bound of 〈X | R〉

Proposition: if 〈X | R〉 is side-confluent iff the reduction relations hold
Moreover, the extra-condition implies the reduction relations

Theorem

Let A be an homogeneous algebra satisfying the extra-condition and admitting a side-confluent
presentation 〈X | R〉. Then, the left bound of 〈X | R〉 is a contracting homotopy for the Koszul
complex of A
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Summary

Summary of presented results: t

• lattice descriptions of confluence and completion

• lattice computation of syzygies

• construction of a contracting homotopy for the Koszul complex

Related results: t

• lattice formulation of the noncommutative F4 algorithm

• lattice classification of quotients of the magmatic operad

• representation theory of topological rew. systems applied to formal power series

THANK YOU FOUR LISTENING!
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