Reduction operators:

completion, syzygies and Koszul duality

Cyrille Chenavier

Johannes Kepler University, Institute for Algebra

Séminaire LIRICA

March 9, 2020

I. Motivations

\triangleright computational problems and rewriting theory
\triangleright termination, confluence and Gröbner bases

II. Reduction operators

\triangleright reduction operators and linear rewriting systems
\triangleright lattice structure of reduction operators
\triangleright lattice descriptions of confluence and completion
III. Applications
\triangleright lattice structure and linear basis of syzygies
\triangleright construction of a contracting homotopy for the Koszul complex

IV. Conclusion

I. MOTIVATIONS

Rewriting theory and computational problems in algebra

Computational problems in algebra:

- how to compute linear bases for \mathbb{K}-algebras?
- solve decision problems, formal analysis of functional systems, computation of algebraic invariants, prove operator identities, ...

Rewriting theory: orientation of relations

- notion of normal forms \rightsquigarrow "simple" representatives of congruence classes

Example: the polynomial algebra over two indeterminates

$\mathbb{K}[x, y]=\mathbb{K}\langle x, y \mid y x-x y\rangle: \quad$ noncommutative polynomials modulo $y x-x y \equiv 0$

- chosen orientation: $y x \rightarrow x y$
- a NF computation: $3 y x x+x y x-x y \rightarrow 4 x y x-x y \rightarrow 4 x x y-x y$

In this case: NF monomials $x^{n} y^{m}$ form a basis of $\mathbb{K}[x, y]$

Rewriting theory and computational problems in algebra

Computational problems in algebra:

- how to compute linear bases for \mathbb{K}-algebras?
- solve decision problems, formal analysis of functional systems, computation of algebraic invariants, prove operator identities, ...

Rewriting theory: orientation of relations

- notion of normal forms \rightsquigarrow "simple" representatives of congruence classes

Example: the polynomial algebra over two indeterminates

$\mathbb{K}[x, y]=\mathbb{K}\langle x, y \mid y x-x y\rangle: \quad$ noncommutative polynomials modulo $y x-x y \equiv 0$

- chosen orientation: $y x \rightarrow x y$
- a NF computation: $3 y x x+x y x-x y \rightarrow 4 x y x-x y \rightarrow 4 x x y-x y$

In this case: NF monomials $x^{n} y^{m}$ form a basis of $\mathbb{K}[x, y]$

Rewriting theory and computational problems in algebra

Computational problems in algebra:

- how to compute linear bases for \mathbb{K}-algebras?
- solve decision problems, formal analysis of functional systems, computation of algebraic invariants, prove operator identities, ...

Rewriting theory: orientation of relations

- notion of normal forms \rightsquigarrow "simple" representatives of congruence classes

Example: the polynomial algebra over two indeterminates

$\mathbb{K}[x, y]=\mathbb{K}\langle x, y \mid y x-x y\rangle: \quad$ noncommutative polynomials modulo $y x-x y \equiv 0$

- chosen orientation: $y x \rightarrow x y$
- a NF computation: $3 y x x+x y x-x y \rightarrow 4 x y x-x y \rightarrow 4 x x y-x y$

In this case: NF monomials $x^{n} y^{m}$ form a basis of $\mathbb{K}[x, y]$

Rewriting theory and computational problems in algebra

Computational problems in algebra:

- how to compute linear bases for \mathbb{K}-algebras?
- solve decision problems, formal analysis of functional systems, computation of algebraic invariants, prove operator identities, ...

Rewriting theory: orientation of relations

- notion of normal forms \rightsquigarrow "simple" representatives of congruence classes

Example: the polynomial algebra over two indeterminates

$\mathbb{K}[x, y]=\mathbb{K}\langle x, y \mid y x-x y\rangle: \quad$ noncommutative polynomials modulo $y x-x y \equiv 0$

- chosen orientation: $y x \rightarrow x y$
- a NF computation: $3 y \mathrm{y} x+x y x-x y \rightarrow 4 x y x-x y \rightarrow 4 x x y-x y$

In this case: NF monomials $x^{n} y^{m}$ form a basis of $\mathbb{K}[x, y]$

Rewriting theory and computational problems in algebra

Computational problems in algebra:

- how to compute linear bases for \mathbb{K}-algebras?
- solve decision problems, formal analysis of functional systems, computation of algebraic invariants, prove operator identities, ...

Rewriting theory: orientation of relations

- notion of normal forms \rightsquigarrow "simple" representatives of congruence classes

Example: the polynomial algebra over two indeterminates

$\mathbb{K}[x, y]=\mathbb{K}\langle x, y \mid y x-x y\rangle: \quad$ noncommutative polynomials modulo $y x-x y \equiv 0$

- chosen orientation: $y x \rightarrow x y$
- a NF computation: $3 y x x+x y x-x y \rightarrow 4 x y x-x y \rightarrow 4 x x y-x y$

In this case: NF monomials $x^{n} y^{m}$ form a basis of $\mathbb{K}[x, y]$

Rewriting theory and computational problems in algebra

Computational problems in algebra:

- how to compute linear bases for \mathbb{K}-algebras?
- solve decision problems, formal analysis of functional systems, computation of algebraic invariants, prove operator identities, ...

Rewriting theory: orientation of relations

- notion of normal forms \rightsquigarrow "simple" representatives of congruence classes

Example: the polynomial algebra over two indeterminates

$\mathbb{K}[x, y]=\mathbb{K}\langle x, y \mid y x-x y\rangle: \quad$ noncommutative polynomials modulo $y x-x y \equiv 0$

- chosen orientation: $y x \rightarrow x y$
- a NF computation: $3 y x x+x y x-x y \rightarrow 4 x y x-x y \rightarrow 4 x x y-x y$

In this case: NF monomials $x^{n} y^{m}$ form a basis of $\mathbb{K}[x, y]$

Rewriting theory and computational problems in algebra

Computational problems in algebra:

- how to compute linear bases for \mathbb{K}-algebras?
- solve decision problems, formal analysis of functional systems, computation of algebraic invariants, prove operator identities, ...

Rewriting theory: orientation of relations

- notion of normal forms \rightsquigarrow "simple" representatives of congruence classes

Example: the polynomial algebra over two indeterminates

$\mathbb{K}[x, y]=\mathbb{K}\langle x, y \mid y x-x y\rangle: \quad$ noncommutative polynomials modulo $y x-x y \equiv 0$

- chosen orientation: $y x \rightarrow x y$
- a NF computation: $3 y x x+x y x-x y \rightarrow 4 x y x-x y \rightarrow 4 x x y-x y$

In this case: NF monomials $x^{n} y^{m}$ form a basis of $\mathbb{K}[x, y]$

Questions

Given $\mathbf{A}=\mathbb{K}\langle X \mid R\rangle$ presented by generators and oriented relations

do NF monomials form a linear basis of \mathbf{A} ?

Equivalently:

- do NF monomials form a generating family of \mathbf{A} ?
- do NF monomials form a free family in A?

Questions

Given $\mathbf{A}=\mathbb{K}\langle X \mid R\rangle$ presented by generators and oriented relations

do NF monomials form a linear basis of A?

Equivalently:

- do NF monomials form a generating family of \mathbf{A} ?
- do NF monomials form a free family in A?

Questions

Given $\mathbf{A}=\mathbb{K}\langle X \mid R\rangle$ presented by generators and oriented relations

do NF monomials form a linear basis of A?

Equivalently:

- do NF monomials form a generating family of \mathbf{A} ?
- do NF monomials form a free family in A?

Normalisation

Example: $\mathbb{K}\langle x \mid x x-x\rangle$ has basis $\{\overline{1}, \bar{x}\}$

- chosen orientation: $x \rightarrow x x \rightsquigarrow 1$ is the only NF monomial
- in general: NF monomials do not form a generating family

Definition: an orientation is terminating if there is no infinite rew. sequence

$$
f_{1} \rightarrow f_{2} \rightarrow \cdots \rightarrow f_{n} \rightarrow f_{n+1} \rightarrow \cdots
$$

Counterexample: $x \rightarrow x x$ and $f_{n}=x^{n}$

Fact

If \rightarrow is a terminating, then NF monomials form a generating family

Normalisation

Example: $\mathbb{K}\langle x \mid x x-x\rangle$ has basis $\{\overline{1}, \bar{x}\}$

- chosen orientation: $x \rightarrow x x \rightsquigarrow 1$ is the only NF monomial
- in general: NF monomials do not form a generating family

Definition: an orientation is terminating if there is no infinite rew. sequence

$$
f_{1} \rightarrow f_{2} \rightarrow \cdots \rightarrow f_{n} \rightarrow f_{n+1} \rightarrow \cdots
$$

Counterexample: $x \rightarrow x x$ and $f_{n}=x^{n}$

Fact

If \rightarrow is a terminating, then NF monomials form a generating family

Normalisation

Example: $\mathbb{K}\langle x \mid x x-x\rangle$ has basis $\{\overline{1}, \bar{x}\}$

- chosen orientation: $x \rightarrow x x \rightsquigarrow 1$ is the only NF monomial
- in general: NF monomials do not form a generating family

Definition: an orientation is terminating if there is no infinite rew. sequence

$$
f_{1} \rightarrow f_{2} \rightarrow \cdots \rightarrow f_{n} \rightarrow f_{n+1} \rightarrow \cdots
$$

Counterexample: $x \rightarrow x x$ and $f_{n}=x^{n}$

Fact

If \rightarrow is a terminating, then NF monomials form a generating family

Deterministic computations

Example: $\mathbb{K}\langle x, y \mid y y-y x\rangle \rightsquigarrow$ chosen orientation: $y y \rightarrow y x$

- $\overline{y x y}=\overline{y x x} \rightsquigarrow$ NF monomials do not form a free family

Definition: an orientation is confluent if

Fact

If \rightarrow is confluent, NF monomials form free family

Deterministic computations

Example: $\mathbb{K}\langle x, y \mid y y-y x\rangle \rightsquigarrow$ chosen orientation: $y y \rightarrow y x$

- $\overline{y x y}=\overline{y x x} \rightsquigarrow$ NF monomials do not form a free family

Definition: an orientation is confluent if

Fact

If \rightarrow is confluent, NF monomials form free family

Deterministic computations

Example: $\mathbb{K}\langle x, y \mid y y-y x\rangle \rightsquigarrow$ chosen orientation: $y y \rightarrow y x$

- $\overline{y x y}=\overline{y x x} \rightsquigarrow$ NF monomials do not form a free family

Definition: an orientation is confluent if

Fact

If \rightarrow is confluent, NF monomials form free family

Algebraic characterisations of confluence

Let I be a (non)commutative polynomial ideal, $R \subseteq I$ and $<$ a monomial order
Definition: R is a (non)commutative Gröbner basis of I if $\operatorname{Im}(R)$ generates $\operatorname{Im}(I)$
Rew. interpretation: $\{\operatorname{lm}(g) \rightarrow r(g): g \in R\}$ is a confluent orientation
IIlustration: $f \in I$ iff $f \xrightarrow{*}_{R} 0 \rightsquigarrow \quad$ independent of the rew. path!
Reduction operators: representation theory of rew. systems

- formalisation of noncommutative GB [Bergman 78]
- lattice characterisation of quadratic GB applied to Koszul duality [Berger 98]

Objectives of the talk

Extend the functional approach

- lattice characterisation of the confluence property (for abstract linear rew. systems)
- lattice interpretation of completion
- applications to computation of syzygies and Koszul duality

Algebraic characterisations of confluence

Let I be a (non)commutative polynomial ideal, $R \subseteq I$ and $<$ a monomial order
Definition: R is a (non)commutative Gröbner basis of I if $\operatorname{Im}(R)$ generates $\operatorname{Im}(I)$
Rew. interpretation: $\{\operatorname{lm}(g) \rightarrow r(g): g \in R\}$ is a confluent orientation
IIlustration: $f \in I$ iff $f \xrightarrow{*}_{R} 0 \rightsquigarrow \quad$ independent of the rew. path!
Reduction operators: representation theory of rew. systems

- formalisation of noncommutative GB [Bergman 78]
- lattice characterisation of quadratic GB applied to Koszul duality [Berger 98]

Objectives of the talk

Extend the functional approach

- lattice characterisation of the confluence property (for abstract linear rew. systems)
- lattice interpretation of completion
- applications to computation of syzygies and Koszul duality

Algebraic characterisations of confluence

Let I be a (non)commutative polynomial ideal, $R \subseteq I$ and $<$ a monomial order
Definition: R is a (non)commutative Gröbner basis of I if $\operatorname{Im}(R)$ generates $\operatorname{Im}(I)$
Rew. interpretation: $\{\operatorname{lm}(g) \rightarrow r(g): g \in R\}$ is a confluent orientation
Illustration: $f \in I$ iff $f \stackrel{*}{\rightarrow}_{R} 0 \rightsquigarrow$ independent of the rew. path!
Reduction operators: representation theory of rew. systems

- formalisation of noncommutative GB [Bergman 78]
- lattice characterisation of quadratic GB applied to Koszul duality [Berger 98]

Objectives of the talk

Extend the functional approach

- lattice characterisation of the confluence property (for abstract linear rew. systems)
- lattice interpretation of completion
- applications to computation of syzygies and Koszul duality

Algebraic characterisations of confluence

Let I be a (non)commutative polynomial ideal, $R \subseteq I$ and $<$ a monomial order
Definition: R is a (non)commutative Gröbner basis of I if $\operatorname{Im}(R)$ generates $\operatorname{Im}(I)$
Rew. interpretation: $\{\operatorname{lm}(g) \rightarrow r(g): g \in R\}$ is a confluent orientation
IIlustration: $f \in I$ iff $f \xrightarrow{*}_{R} 0 \rightsquigarrow \quad$ independent of the rew. path!
Reduction operators: representation theory of rew. systems

- formalisation of noncommutative GB [Bergman 78]
- lattice characterisation of quadratic GB applied to Koszul duality [Berger 98]

Objectives of the talk

Extend the functional approach

- lattice characterisation of the confluence property (for abstract linear rew. systems)
- lattice interpretation of completion
- applications to computation of syzygies and Koszul duality

II. REDUCTION OPERATORS

Functional representations of rew. strategies

Example: $y y \rightarrow y x \rightsquigarrow$ left/right-reduction operators on 3 letter words

Properties of R.O.: L and R are functions that are

- endomorphisms of $G:=\{3$ letter words $\}$
- projectors, i.e., $T^{2}=T$
- not increasing w.r.t. $<_{\text {deglex }}$, i.e.,

$$
\forall g \in G: \quad T(g)=g \quad \text { or } \quad T(g)<\text { deglex } g
$$

Remark: a S.R.S. can be embedded in a rew. system on noncommutative polynomials

Functional representations of rew. strategies

Example: $y y \rightarrow y x \rightsquigarrow$ left/right-reduction operators on 3 letter words

Properties of R.O.: L and R are functions that are

- endomorphisms of $G:=\{3$ letter words $\}$
- projectors, i.e., $T^{2}=T$
- not increasing w.r.t. $<_{\text {deglex }}$, i.e.,

$$
\forall g \in G: \quad T(g)=g \quad \text { or } \quad T(g)<_{\text {deglex }} g
$$

Remark: a S.R.S. can be embedded in a rew. system on noncommutative polynomials

Functional representations of rew. strategies

Example: $y y \rightarrow y x \rightsquigarrow$ left/right-reduction operators on 3 letter words

Properties of R.O.: L and R are functions that are

- endomorphisms of $G:=\{3$ letter words $\}$
- projectors, i.e., $T^{2}=T$
- not increasing w.r.t. $<_{\text {deglex }}$, i.e.,

$$
\forall g \in G: \quad T(g)=g \quad \text { or } \quad T(g)<_{\text {deglex }} g
$$

Remark: a S.R.S. can be embedded in a rew. system on noncommutative polynomials

Functional representations of rew. strategies

Example: $y y \rightarrow y x \rightsquigarrow$ left/right-reduction operators on 3 letter words

Properties of R.O.: L and R are functions that are

- endomorphisms of $G:=\{3$ letter words $\}$
- projectors, i.e., $T^{2}=T$
- not increasing w.r.t. < deglex, i.e.,

$$
\forall g \in G: \quad T(g)=g \quad \text { or } \quad T(g)<_{\text {deglex }} g
$$

Remark: a S.R.S. can be embedded in a rew. system on noncommutative polynomials

Functional representations of rew. strategies

Example: $y y \rightarrow y x \rightsquigarrow$ left/right-reduction operators on 3 letter words

Properties of R.O.: L and R are functions that are

- endomorphisms of $G:=\{3$ letter words $\}$
- projectors, i.e., $T^{2}=T$
- not increasing w.r.t. $<_{\text {deglex }}$, i.e.,

$$
\forall g \in G: \quad T(g)=g \quad \text { or } \quad T(g)<\text { deglex } g
$$

Remark: a S.R.S. can be embedded in a rew. system on noncommutative polynomials

Reduction operators

Fixed: a well-ordered set $(G,<)$, e.g.,

- noncommutative algebras: $G \rightsquigarrow$ words, $<\rightsquigarrow$ monomial order
- matrices: $G \rightsquigarrow$ a finite basis, $<\rightsquigarrow$ a rank on basis elements

Definition: a reduction operator relative to $(\mathbb{K} G,<)$ is a linear projector of $\mathbb{K} G$ s.t.

$$
\forall g \in G: \quad T(g)=g \quad \text { or } \quad T(g)<g
$$

Matrix representation for homogeneous algebras

For the rew. rule $y y \rightarrow y x: L / R$ are left/right R.O. on

$$
\mathbb{K}\{y x x, y x y, y y x, y y y\}
$$

Matrix representation in the basis $y x x<y x y<y y x<y y y$:

$$
L=\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad R=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Reduction operators

Fixed: a well-ordered set $(G,<)$, e.g.,

- noncommutative algebras: $G \rightsquigarrow$ words, $<\rightsquigarrow$ monomial order
- matrices: $G \rightsquigarrow$ a finite basis, $<\rightsquigarrow$ a rank on basis elements

Definition: a reduction operator relative to $(\mathbb{K} G,<)$ is a linear projector of $\mathbb{K} G$ s.t.

$$
\forall g \in G: \quad T(g)=g \quad \text { or } \quad T(g)<g
$$

Matrix representation for homogeneous algebras

For the rew. rule $y y \rightarrow y x: L / R$ are left/right R.O. on

$$
\mathbb{K}\{y x x, y x y, y y x, y y y\}
$$

Matrix representation in the basis $y x x<y x y<y y x<y y y$:

$$
L=\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad R=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Reduction operators

Fixed: a well-ordered set $(G,<)$, e.g.,

- noncommutative algebras: $G \rightsquigarrow$ words, $<\rightsquigarrow$ monomial order
- matrices: $G \rightsquigarrow$ a finite basis, $<\rightsquigarrow$ a rank on basis elements

Definition: a reduction operator relative to $(\mathbb{K} G,<)$ is a linear projector of $\mathbb{K} G$ s.t.

$$
\forall g \in G: \quad T(g)=g \quad \text { or } \quad T(g)<g
$$

Matrix representation for homogeneous algebras

For the rew. rule $y y \rightarrow y x: L / R$ are left/right R.O. on

$$
\mathbb{K}\{y x x, y x y, y y x, y y y\}
$$

Matrix representation in the basis $y x x<y x y<y y x<y y y$:

$$
L=\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad R=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Reduction operators

Fixed: a well-ordered set $(G,<)$, e.g.,

- noncommutative algebras: $G \rightsquigarrow$ words, $<\rightsquigarrow$ monomial order
- matrices: $G \rightsquigarrow$ a finite basis, $<\rightsquigarrow$ a rank on basis elements

Definition: a reduction operator relative to $(\mathbb{K} G,<)$ is a linear projector of $\mathbb{K} G$ s.t.

$$
\forall g \in G: \quad T(g)=g \quad \text { or } \quad T(g)<g
$$

Matrix representation for homogeneous algebras

For the rew. rule $y y \rightarrow y x: L / R$ are left/right R.O. on

$$
\mathbb{K}\{y x x, y x y, y y x, y y y\}
$$

Matrix representation in the basis $y x x<y x y<y y x<y y y:$

$$
\mathrm{L}=\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad \mathrm{R}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Theorem

i. The kernel map induces a bijection between $\mathbf{R O}$ and subspaces of $\mathbb{K} G$:

$$
\text { ker: } \mathbf{R O} \xrightarrow{\sim}\{\text { subspaces of } \mathbb{K} G\}, T \mapsto \operatorname{ker}(T)
$$

ii. RO admits lattice operations:

- $T_{1} \preceq T_{2}$ iff $\operatorname{ker}\left(T_{2}\right) \subseteq \operatorname{ker}\left(T_{1}\right)$
- $T_{1} \wedge T_{2}:=\operatorname{ker}^{-1}\left(\operatorname{ker}\left(T_{1}\right)+\operatorname{ker}\left(T_{2}\right)\right)$
- $T_{1} \vee T_{2}:=\operatorname{ker}^{-1}\left(\operatorname{ker}\left(T_{1}\right) \cap \operatorname{ker}\left(T_{2}\right)\right)$

Fact

$T_{1} \wedge T_{2}$ computes minimal normal forms, e.g.,

Theorem

i. The kernel map induces a bijection between $\mathbf{R O}$ and subspaces of $\mathbb{K} G$:

$$
\text { ker: } \mathbf{R O} \xrightarrow{\sim}\{\text { subspaces of } \mathbb{K} G\}, T \mapsto \operatorname{ker}(T)
$$

ii. RO admits lattice operations:

- $T_{1} \preceq T_{2}$ iff $\operatorname{ker}\left(T_{2}\right) \subseteq \operatorname{ker}\left(T_{1}\right)$
- $T_{1} \wedge T_{2}:=\operatorname{ker}^{-1}\left(\operatorname{ker}\left(T_{1}\right)+\operatorname{ker}\left(T_{2}\right)\right)$
- $T_{1} \vee T_{2}:=\operatorname{ker}^{-1}\left(\operatorname{ker}\left(T_{1}\right) \cap \operatorname{ker}\left(T_{2}\right)\right)$

Fact

$T_{1} \wedge T_{2}$ computes minimal normal forms, e.g.,

Example

$$
L=\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad R=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

- denote by $e_{1}:=y x x, e_{2}:=y x y, e_{3}:=y y x, e_{4}:=y y y$, so that

$$
\operatorname{ker}(L)=\mathbb{K}\left\{\mathbf{e}_{3}-\mathbf{e}_{1}, \quad \mathbf{e}_{4}-\mathbf{e}_{2}\right\}, \quad \operatorname{ker}(R)=\mathbb{K}\left\{\mathrm{e}_{4}-\mathrm{e}_{3}\right\}
$$

- $\operatorname{ker}(L \wedge R)=\mathbb{K}\left\{e_{3}-e_{1}, \quad e_{4}-e_{2}, \quad e_{4}-e_{3}\right\}$
\rightsquigarrow by Gaussian elimination

$$
\operatorname{ker}(L \wedge R)=\mathbb{K}\left\{e_{2}-e_{1}, \quad e_{3}-e_{1}, \quad e_{4}-e_{1}\right\}
$$

\rightsquigarrow hence

$$
L \wedge R=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Example

$$
L=\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad R=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

- denote by $e_{1}:=y x x, e_{2}:=y x y, e_{3}:=y y x, e_{4}:=y y y$, so that

$$
\operatorname{ker}(L)=\mathbb{K}\left\{e_{3}-e_{1}, \quad e_{4}-e_{2}\right\}, \quad \operatorname{ker}(R)=\mathbb{K}\left\{e_{4}-e_{3}\right\}
$$

- $\operatorname{ker}(L \wedge R)=\mathbb{K}\left\{e_{3}-e_{1}, \quad e_{4}-e_{2}, \quad e_{4}-e_{3}\right\}$
\rightsquigarrow by Gaussian elimination

$$
\operatorname{ker}(L \wedge R)=\mathbb{K}\left\{e_{2}-e_{1}, \quad e_{3}-e_{1}, \quad e_{4}-e_{1}\right\}
$$

\rightsquigarrow hence

$$
L \wedge R=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Example

$$
L=\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad R=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

- denote by $e_{1}:=y x x, e_{2}:=y x y, e_{3}:=y y x, e_{4}:=y y y$, so that

$$
\operatorname{ker}(L)=\mathbb{K}\left\{e_{3}-e_{1}, \quad e_{4}-e_{2}\right\}, \quad \operatorname{ker}(R)=\mathbb{K}\left\{e_{4}-e_{3}\right\}
$$

- $\operatorname{ker}(L \wedge R)=\mathbb{K}\left\{e_{3}-e_{1}, \quad e_{4}-e_{2}, \quad e_{4}-e_{3}\right\}$
\rightsquigarrow by Gaussian elimination

$$
\operatorname{ker}(L \wedge R)=\mathbb{K}\left\{\mathbf{e}_{2}-\mathbf{e}_{1}, \quad \mathbf{e}_{3}-\mathbf{e}_{1}, \quad \mathrm{e}_{4}-\mathrm{e}_{1}\right\}
$$

\rightsquigarrow hence

$$
L \wedge R=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Obstructions to confluence

Lemma: $\forall T_{1}, T_{2} \in \mathbf{R O}: \quad \operatorname{nf}\left(T_{1} \wedge T_{2}\right) \subseteq \operatorname{nf}\left(T_{1}\right) \cap \operatorname{nf}\left(T_{2}\right)$

$$
\text { more generally } \rightsquigarrow \forall F \subseteq \mathbf{R O}: \quad \operatorname{nf}(\wedge F) \subseteq \operatorname{nf}(F)
$$

Remark: strict inclusion in general \rightsquigarrow denote by $\operatorname{obs}(F):=\operatorname{nf}(F) \backslash \operatorname{nf}(\wedge F)$

Example:

$$
\begin{aligned}
& \triangleright \operatorname{nf}(L \wedge R)=\mathbb{K}\{y x x\} \\
& \triangleright \operatorname{nf}(L) \cap \operatorname{nf}(R)=\{y x x, y x y\} \\
& \triangleright \operatorname{obs}(L, R)=\{y x y\} \\
& \triangleright y x y \text { is the "obstruction" to confluence! }
\end{aligned}
$$

Theorem

We have the following lattice characterisation of confluence:

$$
\rightarrow_{F} \text { is confluent } \Longleftrightarrow \text { obs }(F)=\emptyset
$$

Obstructions to confluence

Lemma: $\forall T_{1}, T_{2} \in \mathbf{R O}: \quad \operatorname{nf}\left(T_{1} \wedge T_{2}\right) \subseteq \operatorname{nf}\left(T_{1}\right) \cap \operatorname{nf}\left(T_{2}\right)$

$$
\text { more generally } \rightsquigarrow \forall F \subseteq \mathbf{R O}: \quad \operatorname{nf}(\wedge F) \subseteq \operatorname{nf}(F)
$$

Remark: strict inclusion in general \rightsquigarrow denote by obs $(F):=\operatorname{nf}(F) \backslash \operatorname{nf}(\wedge F)$

Example:

$$
\begin{aligned}
& \triangleright \operatorname{nf}(\mathrm{L} \wedge \mathrm{R})=\mathbb{K}\{y x x\} \\
& \triangleright \operatorname{nf}(L) \cap \operatorname{nf}(R)=\{y x x, y x y\} \\
& \triangleright \operatorname{obs}(L, R)=\{y x y\} \\
& \triangleright y x y \text { is the "obstruction" to confluence! }
\end{aligned}
$$

Theorem

We have the following lattice characterisation of confluence:

$$
\rightarrow_{F} \text { is confluent } \Longleftrightarrow \text { obs }(F)=\emptyset
$$

Obstructions to confluence

Lemma: $\forall T_{1}, T_{2} \in \mathbf{R O}: \quad \operatorname{nf}\left(T_{1} \wedge T_{2}\right) \subseteq \operatorname{nf}\left(T_{1}\right) \cap \operatorname{nf}\left(T_{2}\right)$

$$
\text { more generally } \rightsquigarrow \forall F \subseteq \mathbf{R O}: \quad \operatorname{nf}(\wedge F) \subseteq \operatorname{nf}(F)
$$

Remark: strict inclusion in general \rightsquigarrow denote by $\operatorname{obs}(F):=\operatorname{nf}(F) \backslash \operatorname{nf}(\wedge F)$

Example:

$$
\begin{aligned}
& \triangleright \operatorname{nf}(L \wedge R)=\mathbb{K}\{y x x\} \\
& \triangleright \operatorname{nf}(L) \cap \mathrm{nf}(R)=\{y x x, y x y\} \\
& \triangleright \mathrm{obs}(L, R)=\{y x y\} \\
& \triangleright y x y \text { is the "obstruction" to confluence! }
\end{aligned}
$$

Theorem

We have the following lattice characterisation of confluence:

$$
\rightarrow_{F} \text { is confluent } \Longleftrightarrow \text { obs }(F)=\emptyset
$$

Obstructions to confluence

Lemma: $\forall T_{1}, T_{2} \in \mathbf{R O}: \quad \operatorname{nf}\left(T_{1} \wedge T_{2}\right) \subseteq \operatorname{nf}\left(T_{1}\right) \cap \operatorname{nf}\left(T_{2}\right)$

$$
\text { more generally } \rightsquigarrow \forall F \subseteq \mathbf{R O}: \quad \operatorname{nf}(\wedge F) \subseteq \operatorname{nf}(F)
$$

Remark: strict inclusion in general \rightsquigarrow denote by $\operatorname{obs}(F):=\operatorname{nf}(F) \backslash \operatorname{nf}(\wedge F)$

Example:

$$
\begin{aligned}
& \triangleright \operatorname{nf}(L \wedge R)=\mathbb{K}\{y x x\} \\
& \triangleright \operatorname{nf}(L) \cap \operatorname{nf}(R)=\{y x x, y x y\} \\
& \triangleright \operatorname{obs}(L, R)=\{y x y\} \\
& \triangleright y x y \text { is the "obstruction" to confluence! }
\end{aligned}
$$

Theorem

We have the following lattice characterisation of confluence:

$$
\rightarrow_{F} \text { is confluent } \Longleftrightarrow \text { obs }(F)=\emptyset
$$

Example: $P:=(L, R)$ is completed by $C(P)$

$$
C(P)=\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Proposition: $F \subseteq \mathbf{R O}$ is completed by

$$
C(F)(g):=\left\{\begin{array}{l}
\wedge F(g), \quad \text { if } g \in \operatorname{obs}(F) \\
g, \quad \text { otherwise }
\end{array}\right.
$$

Theorem

We have the following lattice characterisation of completion: letting

$$
\vee \bar{F}:=\operatorname{ker}^{-1}\left(\bigcap_{T \in F} n f(T)\right) \quad \text { and } \quad C(F):=\wedge F \vee(\vee \bar{F})
$$

the set $F \cup\{C(F)\}$ is confluent

Example: $P:=(L, R)$ is completed by $C(P)$

$$
C(P)=\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Proposition: $F \subseteq \mathbf{R O}$ is completed by

$$
C(F)(g):=\left\{\begin{array}{l}
\wedge F(g), \quad \text { if } g \in \operatorname{obs}(F) \\
g, \quad \text { otherwise }
\end{array}\right.
$$

Theorem

We have the following lattice characterisation of completion: letting

$$
\vee \bar{F}:=\operatorname{ker}^{-1}\left(\bigcap_{T \in F} n f(T)\right) \quad \text { and } \quad C(F):=\wedge F \vee(\vee \bar{F})
$$

the set $F \cup\{C(F)\}$ is confluent

Example: $P:=(L, R)$ is completed by $C(P)$

$$
C(P)=\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Proposition: $F \subseteq \mathbf{R O}$ is completed by

$$
C(F)(g):=\left\{\begin{array}{l}
\wedge F(\mathrm{~g}), \quad \text { if } \mathrm{g} \in \operatorname{obs}(\mathrm{~F}) \\
g, \quad \text { otherwise }
\end{array}\right.
$$

Theorem

We have the following lattice characterisation of completion: letting

$$
\vee \bar{F}:=\operatorname{ker}^{-1}\left(\bigcap_{T \in F} \operatorname{nf}(T)\right) \quad \text { and } \quad C(F):=\wedge F \vee(\vee \bar{F})
$$

the set $F \cup\{C(F)\}$ is confluent

Example: $P:=(L, R)$ is completed by $C(P)$

$$
C(P)=\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Proposition: $F \subseteq \mathbf{R O}$ is completed by

$$
C(F)(g):=\left\{\begin{array}{l}
\wedge F(g), \quad \text { if } g \in \text { obs }(F) \\
g, \quad \text { otherwise }
\end{array}\right.
$$

Theorem

We have the following lattice characterisation of completion: letting

$$
\vee \bar{F}:=\operatorname{ker}^{-1}\left(\bigcap_{T \in F} n f(T)\right) \quad \text { and } \quad C(F):=\wedge F \vee(\vee \bar{F})
$$

the set $F \cup\{C(F)\}$ is confluent

III. APPLICATIONS

Problems involving syzygy computations:

Completion procedures: remove useless reductions/critical pairs
Higher-dimensional algebra: compute homological/homotopical invariants
Standardisation problems: choose a standard rew. path (e.g., Janet bases)

Syzygies for R.O.

Fixed $F=\left\{T_{1}, \cdots, T_{n}\right\} \subseteq \mathbf{R O}$
Definition: the space of syzygies of F is the kernel of

$$
\operatorname{ker}\left(T_{1}\right) \times \cdots \times \operatorname{ker}\left(T_{n}\right) \rightarrow \mathbb{K} G, \quad\left(v_{1}, \cdots, v_{n}\right) \mapsto v_{1}+\cdots+v_{n}
$$

Proposition: letting $F_{i}:=\left\{T_{1}, \cdots, T_{i}\right\}$, there is a short exact sequence

$$
0 \rightarrow \boldsymbol{\operatorname { s y z }}\left(F_{i-1}\right) \rightarrow \boldsymbol{\operatorname { s y z }}\left(F_{i}\right) \rightarrow \boldsymbol{\operatorname { s y z }}\left(\wedge F_{i-1}, T_{i}\right) \rightarrow 0
$$

$$
\text { Moreover, } \forall T, T^{\prime} \in \mathbf{R O}: \quad \operatorname{syz}\left(T, T^{\prime}\right) \simeq \operatorname{ker}\left(T \vee T^{\prime}\right)
$$

Consequence: a linear basis of $\operatorname{syz}(F)$ may by constructed by induction using

$$
\operatorname{syz}\left(F_{i}\right) \simeq \operatorname{syz}\left(F_{i-1}\right) \oplus \operatorname{ker}\left(\left(\wedge F_{i-1}\right) \vee T_{i}\right)
$$

Problems involving syzygy computations:

Completion procedures: remove useless reductions/critical pairs
Higher-dimensional algebra: compute homological/homotopical invariants
Standardisation problems: choose a standard rew. path (e.g., Janet bases)

Syzygies for R.O.

Fixed $F=\left\{T_{1}, \cdots, T_{n}\right\} \subseteq \mathbf{R O}$
Definition: the space of syzygies of F is the kernel of

$$
\operatorname{ker}\left(T_{1}\right) \times \cdots \times \operatorname{ker}\left(T_{n}\right) \rightarrow \mathbb{K} G, \quad\left(v_{1}, \cdots, v_{n}\right) \mapsto v_{1}+\cdots+v_{n}
$$

Proposition: letting $F_{i}:=\left\{T_{1}, \cdots, T_{i}\right\}$, there is a short exact sequence

$$
0 \rightarrow \boldsymbol{\operatorname { s y z }}\left(F_{i-1}\right) \rightarrow \boldsymbol{\operatorname { s y z }}\left(F_{i}\right) \rightarrow \boldsymbol{\operatorname { s y z }}\left(\wedge F_{i-1}, T_{i}\right) \rightarrow 0
$$

$$
\text { Moreover, } \forall T, T^{\prime} \in \mathbf{R O}: \quad \operatorname{syz}\left(T, T^{\prime}\right) \simeq \operatorname{ker}\left(T \vee T^{\prime}\right)
$$

Consequence: a linear basis of $\operatorname{syz}(F)$ may by constructed by induction using

$$
\operatorname{syz}\left(F_{i}\right) \simeq \operatorname{syz}\left(F_{i-1}\right) \oplus \operatorname{ker}\left(\left(\wedge F_{i-1}\right) \vee T_{i}\right)
$$

Example

- $G:=\left\{g_{1}<\cdots<g_{5}\right\}$
- $F:=\left\{T_{1}, \cdots, T_{5}\right\}$

Basis of syzygies: $\operatorname{syz}(F)$ is 2-dimensional

- $\operatorname{ker}\left(T_{1} \vee T_{2}\right)$ has one basis element

$$
g_{5}-g_{3}=g_{5}-T_{1}\left(g_{5}\right)=\left(g_{5}-T_{2}\left(g_{5}\right)\right)-\left(g_{3}-T_{2}\left(g_{3}\right)\right)
$$

- $\operatorname{ker}\left(\left(\wedge F_{4}\right) \vee T_{5}\right)$ has one basis element

$$
g_{4}-g_{1}=\left(g_{4}-T_{4}\left(g_{4}\right)\right)+\left(g_{5}-T_{3}\left(g_{5}\right)\right)-\left(g_{5}-T_{1}\left(g_{5}\right)\right)=g_{4}-T_{5}\left(g_{4}\right)
$$

Remark: useless reductions are of the form $g \rightarrow T_{i}(g)$, where $g \notin \operatorname{ker}\left(\left(\wedge F_{i-1}\right) \vee T_{i}\right)$

Example

- $G:=\left\{g_{1}<\cdots<g_{5}\right\}$
- $F:=\left\{T_{1}, \cdots, T_{5}\right\}$

Basis of syzygies: $\operatorname{syz}(F)$ is 2-dimensional

- $\operatorname{ker}\left(T_{1} \vee T_{2}\right)$ has one basis element

$$
g_{5}-g_{3}=\mathrm{g}_{5}-\mathbf{T}_{1}\left(\mathrm{~g}_{5}\right)=\left(\mathrm{g}_{5}-\mathbf{T}_{2}\left(\mathrm{~g}_{5}\right)\right)-\left(\mathrm{g}_{3}-\mathbf{T}_{2}\left(\mathrm{~g}_{3}\right)\right)
$$

- $\operatorname{ker}\left(\left(\wedge F_{4}\right) \vee T_{5}\right)$ has one basis element

$$
g_{4}-g_{1}=\left(g_{4}-T_{4}\left(g_{4}\right)\right)+\left(g_{5}-T_{3}\left(g_{5}\right)\right)-\left(g_{5}-T_{1}\left(g_{5}\right)\right)=g_{4}-T_{5}\left(g_{4}\right)
$$

Remark: useless reductions are of the form $g \rightarrow T_{i}(g)$, where $g \notin \operatorname{ker}\left(\left(\wedge F_{i-1}\right) \vee T_{i}\right)$

Example

- $G:=\left\{g_{1}<\cdots<g_{5}\right\}$
- $F:=\left\{T_{1}, \cdots, T_{5}\right\}$

Basis of syzygies: $\operatorname{syz}(F)$ is 2-dimensional

- $\operatorname{ker}\left(T_{1} \vee T_{2}\right)$ has one basis element

$$
g_{5}-g_{3}=g_{5}-T_{1}\left(g_{5}\right)=\left(g_{5}-T_{2}\left(g_{5}\right)\right)-\left(g_{3}-T_{2}\left(g_{3}\right)\right)
$$

- $\operatorname{ker}\left(\left(\wedge F_{4}\right) \vee T_{5}\right)$ has one basis element

$$
g_{4}-g_{1}=\left(g_{4}-T_{4}\left(g_{4}\right)\right)+\left(g_{5}-T_{3}\left(g_{5}\right)\right)-\left(g_{5}-T_{1}\left(g_{5}\right)\right)=g_{4}-T_{5}\left(g_{4}\right)
$$

Remark: useless reductions are of the form $g \rightarrow T_{i}(g)$, where $g \notin \operatorname{ker}\left(\left(\wedge F_{i-1}\right) \vee T_{i}\right)$

Example

- $G:=\left\{g_{1}<\cdots<g_{5}\right\}$
- $F:=\left\{T_{1}, \cdots, T_{5}\right\}$

Basis of syzygies: $\operatorname{syz}(F)$ is 2-dimensional

- $\operatorname{ker}\left(T_{1} \vee T_{2}\right)$ has one basis element

$$
g_{5}-g_{3}=g_{5}-T_{1}\left(g_{5}\right)=\left(g_{5}-T_{2}\left(g_{5}\right)\right)-\left(g_{3}-T_{2}\left(g_{3}\right)\right)
$$

- $\operatorname{ker}\left(\left(\wedge F_{4}\right) \vee T_{5}\right)$ has one basis element

$$
g_{4}-g_{1}=\left(\mathrm{g}_{4}-\mathrm{T}_{4}\left(\mathrm{~g}_{4}\right)\right)+\left(\mathrm{g}_{5}-\mathrm{T}_{3}\left(\mathrm{~g}_{5}\right)\right)-\left(\mathrm{g}_{5}-\mathrm{T}_{1}\left(\mathrm{~g}_{5}\right)\right)=\mathrm{g}_{4}-\mathrm{T}_{5}\left(\mathrm{~g}_{4}\right)
$$

Remark: useless reductions are of the form $g \rightarrow T_{i}(g)$, where $g \notin \operatorname{ker}\left(\left(\wedge F_{i-1}\right) \vee T_{i}\right)$

Example

- $G:=\left\{g_{1}<\cdots<g_{5}\right\}$
- $F:=\left\{T_{1}, \cdots, T_{5}\right\}$

Basis of syzygies: $\operatorname{syz}(F)$ is 2-dimensional

- $\operatorname{ker}\left(T_{1} \vee T_{2}\right)$ has one basis element

$$
g_{5}-g_{3}=g_{5}-T_{1}\left(g_{5}\right)=\left(g_{5}-T_{2}\left(g_{5}\right)\right)-\left(g_{3}-T_{2}\left(g_{3}\right)\right)
$$

- $\operatorname{ker}\left(\left(\wedge F_{4}\right) \vee T_{5}\right)$ has one basis element

$$
g_{4}-g_{1}=\left(g_{4}-T_{4}\left(g_{4}\right)\right)+\left(g_{5}-T_{3}\left(g_{5}\right)\right)-\left(g_{5}-T_{1}\left(g_{5}\right)\right)=g_{4}-T_{5}\left(g_{4}\right)
$$

Remark: useless reductions are of the form $g \rightarrow T_{i}(g)$, where $g \notin \operatorname{ker}\left(\left(\wedge F_{i-1}\right) \vee T_{i}\right)$

Example

- $G:=\left\{g_{1}<\cdots<g_{5}\right\}$
- $F:=\left\{T_{1}, \cdots, T_{5}\right\}$

Basis of syzygies: $\operatorname{syz}(F)$ is 2-dimensional

- $\operatorname{ker}\left(T_{1} \vee T_{2}\right)$ has one basis element

$$
g_{5}-g_{3}=g_{5}-T_{1}\left(g_{5}\right)=\left(g_{5}-T_{2}\left(g_{5}\right)\right)-\left(g_{3}-T_{2}\left(g_{3}\right)\right)
$$

- $\operatorname{ker}\left(\left(\wedge F_{4}\right) \vee T_{5}\right)$ has one basis element

$$
g_{4}-g_{1}=\left(g_{4}-T_{4}\left(g_{4}\right)\right)+\left(g_{5}-T_{3}\left(g_{5}\right)\right)-\left(g_{5}-T_{1}\left(g_{5}\right)\right)=g_{4}-T_{5}\left(g_{4}\right)
$$

Remark: useless reductions are of the form $g \rightarrow \mathbf{T}_{\mathbf{i}}(\mathrm{g})$, where $\mathrm{g} \notin \operatorname{ker}\left(\left(\wedge \mathrm{F}_{\mathrm{i}-1}\right) \vee \mathbf{T}_{\mathrm{i}}\right)$

Example

- $G:=\left\{g_{1}<\cdots<g_{5}\right\}$
- $F:=\left\{T_{1}, \cdots, T_{5}\right\}$

Basis of syzygies: $\operatorname{syz}(F)$ is 2-dimensional

- $\operatorname{ker}\left(T_{1} \vee T_{2}\right)$ has one basis element

$$
g_{5}-g_{3}=g_{5}-T_{1}\left(g_{5}\right)=\left(g_{5}-T_{2}\left(g_{5}\right)\right)-\left(g_{3}-T_{2}\left(g_{3}\right)\right)
$$

- $\operatorname{ker}\left(\left(\wedge F_{4}\right) \vee T_{5}\right)$ has one basis element

$$
g_{4}-g_{1}=\left(g_{4}-T_{4}\left(g_{4}\right)\right)+\left(g_{5}-T_{3}\left(g_{5}\right)\right)-\left(g_{5}-T_{1}\left(g_{5}\right)\right)=g_{4}-T_{5}\left(g_{4}\right)
$$

Remark: useless reductions are of the form $g \rightarrow \mathbf{T}_{\mathbf{i}}(\mathrm{g})$, where $\mathrm{g} \notin \operatorname{ker}\left(\left(\wedge \mathrm{F}_{\mathrm{i}-1}\right) \vee \mathbf{T}_{\mathrm{i}}\right)$

Example

- $G:=\left\{g_{1}<\cdots<g_{5}\right\}$
- $F:=\left\{T_{1}, \cdots, T_{5}\right\}$

Basis of syzygies: $\operatorname{syz}(F)$ is 2-dimensional

- $\operatorname{ker}\left(T_{1} \vee T_{2}\right)$ has one basis element

$$
g_{5}-g_{3}=g_{5}-T_{1}\left(g_{5}\right)=\left(g_{5}-T_{2}\left(g_{5}\right)\right)-\left(g_{3}-T_{2}\left(g_{3}\right)\right)
$$

- $\operatorname{ker}\left(\left(\wedge F_{4}\right) \vee T_{5}\right)$ has one basis element

$$
g_{4}-g_{1}=\left(g_{4}-T_{4}\left(g_{4}\right)\right)+\left(g_{5}-T_{3}\left(g_{5}\right)\right)-\left(g_{5}-T_{1}\left(g_{5}\right)\right)=g_{4}-T_{5}\left(g_{4}\right)
$$

Remark: useless reductions are of the form $g \rightarrow \mathbf{T}_{\mathbf{i}}(\mathrm{g})$, where $\mathrm{g} \notin \operatorname{ker}\left(\left(\wedge \mathrm{F}_{\mathrm{i}-1}\right) \vee \mathbf{T}_{\mathrm{i}}\right)$

Example

Basis of syzygies: $\operatorname{syz}(F)$ is 2-dimensional

- $\operatorname{ker}\left(T_{1} \vee T_{2}\right)$ has one basis element

$$
g_{5}-g_{3}=g_{5}-T_{1}\left(g_{5}\right)=\left(g_{5}-T_{2}\left(g_{5}\right)\right)-\left(g_{3}-T_{2}\left(g_{3}\right)\right)
$$

- $\operatorname{ker}\left(\left(\wedge F_{4}\right) \vee T_{5}\right)$ has one basis element

$$
g_{4}-g_{1}=\left(g_{4}-T_{4}\left(g_{4}\right)\right)+\left(g_{5}-T_{3}\left(g_{5}\right)\right)-\left(g_{5}-T_{1}\left(g_{5}\right)\right)=g_{4}-T_{5}\left(g_{4}\right)
$$

Remark: useless reductions are of the form $g \rightarrow \mathbf{T}_{\mathbf{i}}(\mathrm{g})$, where $\mathrm{g} \notin \operatorname{ker}\left(\left(\wedge \mathrm{F}_{\mathrm{i}-1}\right) \vee \mathbf{T}_{\mathrm{i}}\right)$

Effective homological algebra

Free resolutions: consider an associative unital \mathbb{K}-algebra \mathbf{A}

- higher syzygies \rightsquigarrow homological invariants of \mathbf{A}
- computing invariants requires to construct free resolutions, i.e.,

$$
\cdots \xrightarrow{\partial_{n+1}} \mathbf{F}_{n} \xrightarrow{\partial_{n}} \mathbf{F}_{n-1} \xrightarrow{\partial_{n-1}} \cdots \xrightarrow{\partial_{2}} \mathbf{F}_{1} \xrightarrow{\partial_{1}} \mathbf{F}_{0} \xrightarrow{\epsilon} \mathbb{K} \longrightarrow 0
$$

where \mathbf{F}_{n} are free modules and $\operatorname{im}\left(\partial_{n+1}\right)=\operatorname{ker}\left(\partial_{n}\right)$
Tke Koszul complex: assume \mathbf{A} is homogeneous, i.e., $\mathbf{A}=\mathbb{K}\langle X \mid R\rangle, R \subseteq \mathbb{K} X^{(N)}$

- a candidate: the Koszul complex $\rightsquigarrow \mathbf{F}_{n}=\mathbf{A} \otimes J_{n}$, where

$$
J_{0}=\mathbb{K}, \quad J_{1}=\mathbb{K} X, \quad J_{2}=\mathbb{K} R, \quad J_{3}=(\mathbb{K} R \otimes \mathbb{K} X) \cap(\mathbb{K} X \otimes \mathbb{K} R), \cdots
$$

- when $\left(\mathbf{A} \otimes J_{\bullet}, \partial_{\bullet}\right)$ is a resolution, it is minimal, i.e., $\operatorname{Tor}_{\bullet}(\mathbb{K}, \mathbb{K})=J_{\bullet}$

A criterion [Berger, 2001]

extra-condition and side-confluent presentation $\Longrightarrow\left(\mathbf{A} \otimes J_{\bullet}, \partial_{\bullet}\right)$ is a resolution

Effective homological algebra

Free resolutions: consider an associative unital \mathbb{K}-algebra \mathbf{A}

- higher syzygies \rightsquigarrow homological invariants of \mathbf{A}
- computing invariants requires to construct free resolutions, i.e.,

$$
\cdots \xrightarrow{\partial_{n+1}} \mathbf{F}_{n} \xrightarrow{\partial_{n}} \mathbf{F}_{n-1} \xrightarrow{\partial_{n-1}} \cdots \xrightarrow{\partial_{2}} \mathbf{F}_{1} \xrightarrow{\partial_{1}} \mathbf{F}_{0} \xrightarrow{\epsilon} \mathbb{K} \longrightarrow 0
$$

where \mathbf{F}_{n} are free modules and $\operatorname{im}\left(\partial_{n+1}\right)=\operatorname{ker}\left(\partial_{n}\right)$
Tke Koszul complex: assume \mathbf{A} is homogeneous, i.e., $\mathbf{A}=\mathbb{K}\langle X \mid R\rangle, R \subseteq \mathbb{K} X^{(N)}$

- a candidate: the Koszul complex $\rightsquigarrow \mathbf{F}_{n}=\mathbf{A} \otimes J_{n}$, where

$$
J_{0}=\mathbb{K}, \quad J_{1}=\mathbb{K} X, \quad J_{2}=\mathbb{K} R, \quad J_{3}=(\mathbb{K} R \otimes \mathbb{K} X) \cap(\mathbb{K} X \otimes \mathbb{K} R), \cdots
$$

- when $\left(\mathbf{A} \otimes J_{\bullet}, \partial_{\bullet}\right)$ is a resolution, it is minimal, i.e., $\operatorname{Tor}_{\bullet}(\mathbb{K}, \mathbb{K})=J_{\bullet}$

A criterion [Berger, 2001]

extra-condition and side-confluent presentation $\Longrightarrow\left(\mathbf{A} \otimes J_{\bullet}, \partial_{\bullet}\right)$ is a resolution

Effective homological algebra

Free resolutions: consider an associative unital \mathbb{K}-algebra \mathbf{A}

- higher syzygies \rightsquigarrow homological invariants of \mathbf{A}
- computing invariants requires to construct free resolutions, i.e.,

$$
\cdots \xrightarrow{\partial_{n+1}} \mathbf{F}_{n} \xrightarrow{\partial_{n}} \mathbf{F}_{n-1} \xrightarrow{\partial_{n-1}} \cdots \xrightarrow{\partial_{2}} \mathbf{F}_{1} \xrightarrow{\partial_{1}} \mathbf{F}_{0} \xrightarrow{\epsilon} \mathbb{K} \longrightarrow 0
$$

where \mathbf{F}_{n} are free modules and $\operatorname{im}\left(\partial_{n+1}\right)=\operatorname{ker}\left(\partial_{n}\right)$
Tke Koszul complex: assume \mathbf{A} is homogeneous, i.e., $\mathbf{A}=\mathbb{K}\langle X \mid R\rangle, R \subseteq \mathbb{K} X^{(N)}$

- a candidate: the Koszul complex $\rightsquigarrow \mathbf{F}_{n}=\mathbf{A} \otimes J_{n}$, where

$$
J_{0}=\mathbb{K}, \quad J_{1}=\mathbb{K} X, \quad J_{2}=\mathbb{K} R, \quad J_{3}=(\mathbb{K} R \otimes \mathbb{K} X) \cap(\mathbb{K} X \otimes \mathbb{K} R), \cdots
$$

- when $\left(\mathbf{A} \otimes J_{\bullet}, \partial_{\bullet}\right)$ is a resolution, it is minimal, i.e., $\operatorname{Tor}_{\bullet}(\mathbb{K}, \mathbb{K})=J_{\bullet}$

A criterion [Berger, 2001]

extra-condition and side-confluent presentation $\Longrightarrow\left(\mathbf{A} \otimes J_{\bullet}, \partial_{\bullet}\right)$ is a resolution

Effective homological algebra

Free resolutions: consider an associative unital \mathbb{K}-algebra \mathbf{A}

- higher syzygies \rightsquigarrow homological invariants of \mathbf{A}
- computing invariants requires to construct free resolutions, i.e.,

$$
\cdots \xrightarrow{\partial_{n+1}} \mathbf{F}_{n} \xrightarrow{\partial_{n}} \mathbf{F}_{n-1} \xrightarrow{\partial_{n-1}} \cdots \xrightarrow{\partial_{2}} \mathbf{F}_{1} \xrightarrow{\partial_{1}} \mathbf{F}_{0} \xrightarrow{\epsilon} \mathbb{K} \longrightarrow 0
$$

where \mathbf{F}_{n} are free modules and $\operatorname{im}\left(\partial_{n+1}\right)=\operatorname{ker}\left(\partial_{n}\right)$
Tke Koszul complex: assume \mathbf{A} is homogeneous, i.e., $\mathbf{A}=\mathbb{K}\langle X \mid R\rangle, R \subseteq \mathbb{K} \boldsymbol{X}^{(N)}$

- a candidate: the Koszul complex $\rightsquigarrow \mathbf{F}_{n}=\mathbf{A} \otimes J_{n}$, where

$$
J_{0}=\mathbb{K}, \quad J_{1}=\mathbb{K} X, \quad J_{2}=\mathbb{K} R, \quad J_{3}=(\mathbb{K} R \otimes \mathbb{K} X) \cap(\mathbb{K} X \otimes \mathbb{K} R), \cdots
$$

- when $\left(\mathbf{A} \otimes J_{\bullet}, \partial_{\bullet}\right)$ is a resolution, it is minimal, i.e., $\operatorname{Tor}_{\bullet}^{\mathbf{A}}(\mathbb{K}, \mathbb{K})=J_{\bullet}$

A criterion [Berger, 2001]

extra-condition and side-confluent presentation $\Longrightarrow\left(\mathbf{A} \otimes J_{\bullet}, \partial_{\bullet}\right)$ is a resolution

Effective homological algebra

Free resolutions: consider an associative unital \mathbb{K}-algebra \mathbf{A}

- higher syzygies \rightsquigarrow homological invariants of \mathbf{A}
- computing invariants requires to construct free resolutions, i.e.,

$$
\cdots \xrightarrow{\partial_{n+1}} \mathbf{F}_{n} \xrightarrow{\partial_{n}} \mathbf{F}_{n-1} \xrightarrow{\partial_{n-1}} \cdots \xrightarrow{\partial_{2}} \mathbf{F}_{1} \xrightarrow{\partial_{1}} \mathbf{F}_{0} \xrightarrow{\epsilon} \mathbb{K} \longrightarrow 0
$$

where \mathbf{F}_{n} are free modules and $\operatorname{im}\left(\partial_{n+1}\right)=\operatorname{ker}\left(\partial_{n}\right)$
Tke Koszul complex: assume \mathbf{A} is homogeneous, i.e., $\mathbf{A}=\mathbb{K}\langle X \mid R\rangle, R \subseteq \mathbb{K} \boldsymbol{X}^{(N)}$

- a candidate: the Koszul complex $\rightsquigarrow \mathbf{F}_{n}=\mathbf{A} \otimes J_{n}$, where

$$
J_{0}=\mathbb{K}, \quad J_{1}=\mathbb{K} X, \quad J_{2}=\mathbb{K} R, \quad J_{3}=(\mathbb{K} R \otimes \mathbb{K} X) \cap(\mathbb{K} X \otimes \mathbb{K} R), \cdots
$$

- when $\left(\mathbf{A} \otimes J_{\bullet}, \partial_{\bullet}\right)$ is a resolution, it is minimal, i.e., $\operatorname{Tor}_{\bullet}^{\mathbf{A}}(\mathbb{K}, \mathbb{K})=J_{\bullet}$

A criterion [Berger, 2001]

extra-condition and side-confluent presentation $\Longrightarrow\left(\mathbf{A} \otimes J_{\bullet}, \partial_{\bullet}\right)$ is a resolution

Effective homological algebra

Free resolutions: consider an associative unital \mathbb{K}-algebra \mathbf{A}

- higher syzygies \rightsquigarrow homological invariants of \mathbf{A}
- computing invariants requires to construct free resolutions, i.e.,

$$
\cdots \xrightarrow{\partial_{n+1}} \mathbf{F}_{n} \xrightarrow{\partial_{n}} \mathbf{F}_{n-1} \xrightarrow{\partial_{n-1}} \cdots \xrightarrow{\partial_{2}} \mathbf{F}_{1} \xrightarrow{\partial_{1}} \mathbf{F}_{0} \xrightarrow{\epsilon} \mathbb{K} \longrightarrow 0
$$

where \mathbf{F}_{n} are free modules and $\operatorname{im}\left(\partial_{n+1}\right)=\operatorname{ker}\left(\partial_{n}\right)$
Tke Koszul complex: assume \mathbf{A} is homogeneous, i.e., $\mathbf{A}=\mathbb{K}\langle X \mid R\rangle, R \subseteq \mathbb{K} \boldsymbol{X}^{(N)}$

- a candidate: the Koszul complex $\rightsquigarrow \mathbf{F}_{n}=\mathbf{A} \otimes J_{n}$, where

$$
J_{0}=\mathbb{K}, \quad J_{1}=\mathbb{K} X, \quad J_{2}=\mathbb{K} R, \quad J_{3}=(\mathbb{K} R \otimes \mathbb{K} X) \cap(\mathbb{K} X \otimes \mathbb{K} R), \cdots
$$

- when $\left(\mathbf{A} \otimes J_{\bullet}, \partial_{\bullet}\right)$ is a resolution, it is minimal, i.e., $\operatorname{Tor}_{\bullet}^{\mathbf{A}}(\mathbb{K}, \mathbb{K})=J_{\bullet}$

A criterion [Berger, 2001]

extra-condition and side-confluent presentation $\Longrightarrow\left(\mathbf{A} \otimes J_{\bullet}, \partial_{\bullet}\right)$ is a resolution

Effective homological algebra

Free resolutions: consider an associative unital \mathbb{K}-algebra \mathbf{A}

- higher syzygies \rightsquigarrow homological invariants of \mathbf{A}
- computing invariants requires to construct free resolutions, i.e.,

$$
\cdots \xrightarrow{\partial_{n+1}} \mathbf{F}_{n} \xrightarrow{\partial_{n}} \mathbf{F}_{n-1} \xrightarrow{\partial_{n-1}} \cdots \xrightarrow{\partial_{2}} \mathbf{F}_{1} \xrightarrow{\partial_{1}} \mathbf{F}_{0} \xrightarrow{\epsilon} \mathbb{K} \longrightarrow 0
$$

where \mathbf{F}_{n} are free modules and $\operatorname{im}\left(\partial_{n+1}\right)=\operatorname{ker}\left(\partial_{n}\right)$
Tke Koszul complex: assume \mathbf{A} is homogeneous, i.e., $\mathbf{A}=\mathbb{K}\langle X \mid R\rangle, R \subseteq \mathbb{K} X^{(N)}$

- a candidate: the Koszul complex $\rightsquigarrow \mathbf{F}_{n}=\mathbf{A} \otimes J_{n}$, where

$$
J_{0}=\mathbb{K}, \quad J_{1}=\mathbb{K} X, \quad J_{2}=\mathbb{K} R, \quad J_{3}=(\mathbb{K} R \otimes \mathbb{K} X) \cap(\mathbb{K} X \otimes \mathbb{K} R), \cdots
$$

- when $\left(\mathbf{A} \otimes J_{\bullet}, \partial_{\bullet}\right)$ is a resolution, it is minimal, i.e., $\operatorname{Tor}_{\bullet}(\mathbb{K}, \mathbb{K})=J_{\bullet}$

A criterion [Berger, 2001]

extra-condition and side-confluent presentation $\Longrightarrow\left(\mathbf{A} \otimes J_{\bullet}, \partial_{\bullet}\right)$ is a resolution

A constructive proof of the Berger's criterion

Objective: constructive proof of Berger's criterion through a contracting homotopy

$$
\begin{gathered}
\rightsquigarrow h_{n}: \mathbf{A} \otimes J_{n} \rightarrow \mathbf{A} \otimes J_{n+1} \quad \text { s.t. } \quad \partial_{n} h_{n+1}+h_{n} \partial_{n-1}=\operatorname{id}_{\mathbf{A} \otimes J_{n}} \\
\Rightarrow \quad \operatorname{ker}\left(\partial_{n-1}\right)=\operatorname{im}\left(\partial_{n}\right)
\end{gathered}
$$

Construction: given $\mathbf{A}=\mathbb{K}\langle X \mid R\rangle$ homogeneous and $<$ a monomial order

- $S:=\operatorname{ker}^{-1}(\mathbb{K} R) \in \mathbf{R O}\left(X^{*},<\right)$
- $T_{1}^{n}, T_{2}^{n} \rightsquigarrow$ formulas using S and lattice operations
- $h_{n}: \mathbf{A} \otimes J_{n} \rightarrow \mathbf{A} \otimes J_{n+1} \rightsquigarrow$ polynomial in $\left(T_{1}^{n}, T_{2}^{n}\right)$

The family $\left(h_{n}\right)_{n}$ is called the left bound of $\langle X \mid R\rangle$
Proposition: if $\langle X \mid R\rangle$ is side-confluent iff the reduction relations hold
Moreover, the extra-condition implies the reduction relations

Theorem

Let \mathbf{A} be an homogeneous algebra satisfying the extra-condition and admitting a side-confluent presentation $\langle X \mid R\rangle$. Then, the left bound of $\langle X \mid R\rangle$ is a contracting homotopy for the Koszul complex of \mathbf{A}

A constructive proof of the Berger's criterion

Objective: constructive proof of Berger's criterion through a contracting homotopy

$$
\begin{gathered}
\rightsquigarrow h_{n}: \mathbf{A} \otimes J_{n} \rightarrow \mathbf{A} \otimes J_{n+1} \quad \text { s.t. } \quad \partial_{n} h_{n+1}+h_{n} \partial_{n-1}=\operatorname{id}_{\mathbf{A} \otimes J_{n}} \\
\Rightarrow \quad \operatorname{ker}\left(\partial_{n-1}\right)=\operatorname{im}\left(\partial_{n}\right)
\end{gathered}
$$

Construction: given $\mathbf{A}=\mathbb{K}\langle X \mid R\rangle$ homogeneous and $<$ a monomial order

- $S:=\operatorname{ker}^{-1}(\mathbb{K} R) \in \mathbf{R O}\left(X^{*},<\right)$
- $T_{1}^{n}, T_{2}^{n} \rightsquigarrow$ formulas using S and lattice operations
- $h_{n}: \mathbf{A} \otimes J_{n} \rightarrow \mathbf{A} \otimes J_{n+1} \rightsquigarrow$ polynomial in $\left(T_{1}^{n}, T_{2}^{n}\right)$

The family $\left(h_{n}\right)_{n}$ is called the left bound of $\langle X \mid R\rangle$
Proposition: if $\langle X \mid R\rangle$ is side-confluent iff the reduction relations hold
Moreover, the extra-condition implies the reduction relations

Theorem

Let \mathbf{A} be an homogeneous algebra satisfying the extra-condition and admitting a side-confluent presentation $\langle X \mid R\rangle$. Then, the left bound of $\langle X \mid R\rangle$ is a contracting homotopy for the Koszul complex of \mathbf{A}

A constructive proof of the Berger's criterion

Objective: constructive proof of Berger's criterion through a contracting homotopy

$$
\begin{gathered}
\rightsquigarrow h_{n}: \mathbf{A} \otimes J_{n} \rightarrow \mathbf{A} \otimes J_{n+1} \quad \text { s.t. } \quad \partial_{n} h_{n+1}+h_{n} \partial_{n-1}=\mathrm{id}_{\mathbf{A} \otimes J_{n}} \\
\Rightarrow \quad \operatorname{ker}\left(\partial_{n-1}\right) \quad=\quad \operatorname{im}\left(\partial_{n}\right)
\end{gathered}
$$

Construction: given $\mathbf{A}=\mathbb{K}\langle X \mid R\rangle$ homogeneous and $<$ a monomial order

- $S:=\operatorname{ker}^{-1}(\mathbb{K} R) \in \mathbf{R O}\left(X^{*},<\right)$
- $T_{1}^{n}, T_{2}^{n} \rightsquigarrow$ formulas using S and lattice operations
- $h_{n}: \mathbf{A} \otimes J_{n} \rightarrow \mathbf{A} \otimes J_{n+1} \rightsquigarrow$ polynomial in $\left(T_{1}^{n}, T_{2}^{n}\right)$

The family $\left(h_{n}\right)_{n}$ is called the left bound of $\langle X \mid R\rangle$
Proposition: if $\langle X \mid R\rangle$ is side-confluent iff the reduction relations hold
Moreover, the extra-condition implies the reduction relations

Theorem

Let \mathbf{A} be an homogeneous algebra satisfying the extra-condition and admitting a side-confluent presentation $\langle X \mid R\rangle$. Then, the left bound of $\langle X \mid R\rangle$ is a contracting homotopy for the Koszul complex of \mathbf{A}

A constructive proof of the Berger's criterion

Objective: constructive proof of Berger's criterion through a contracting homotopy

$$
\begin{gathered}
\rightsquigarrow h_{n}: \mathbf{A} \otimes J_{n} \rightarrow \mathbf{A} \otimes J_{n+1} \quad \text { s.t. } \quad \partial_{n} h_{n+1}+h_{n} \partial_{n-1}=\mathrm{id}_{\mathbf{A} \otimes J_{n}} \\
\Rightarrow \quad \operatorname{ker}\left(\partial_{n-1}\right) \quad=\quad \operatorname{im}\left(\partial_{n}\right)
\end{gathered}
$$

Construction: given $\mathbf{A}=\mathbb{K}\langle X \mid R\rangle$ homogeneous and $<$ a monomial order

- $S:=\operatorname{ker}^{-1}(\mathbb{K} R) \in \mathbf{R O}\left(X^{*},<\right)$
- $T_{1}^{n}, T_{2}^{n} \rightsquigarrow$ formulas using S and lattice operations
- $h_{n}: \mathbf{A} \otimes J_{n} \rightarrow \mathbf{A} \otimes J_{n+1} \rightsquigarrow$ polynomial in $\left(T_{1}^{n}, T_{2}^{n}\right)$

The family $\left(h_{n}\right)_{n}$ is called the left bound of $\langle X \mid R\rangle$
Proposition: if $\langle X \mid R\rangle$ is side-confluent iff the reduction relations hold
Moreover, the extra-condition implies the reduction relations

Theorem

Let \mathbf{A} be an homogeneous algebra satisfying the extra-condition and admitting a side-confluent presentation $\langle X \mid R\rangle$. Then, the left bound of $\langle X \mid R\rangle$ is a contracting homotopy for the Koszul complex of \mathbf{A}

A constructive proof of the Berger's criterion

Objective: constructive proof of Berger's criterion through a contracting homotopy

$$
\begin{gathered}
\rightsquigarrow h_{n}: \mathbf{A} \otimes J_{n} \rightarrow \mathbf{A} \otimes J_{n+1} \quad \text { s.t. } \quad \partial_{n} h_{n+1}+h_{n} \partial_{n-1}=\mathrm{id}_{\mathbf{A} \otimes J_{n}} \\
\Rightarrow \quad \operatorname{ker}\left(\partial_{n-1}\right) \quad=\quad \operatorname{im}\left(\partial_{n}\right)
\end{gathered}
$$

Construction: given $\mathbf{A}=\mathbb{K}\langle X \mid R\rangle$ homogeneous and $<$ a monomial order

- $S:=\operatorname{ker}^{-1}(\mathbb{K} R) \in \mathbf{R O}\left(X^{*},<\right)$
- $T_{1}^{n}, T_{2}^{n} \rightsquigarrow$ formulas using S and lattice operations
- $h_{n}: \mathbf{A} \otimes J_{n} \rightarrow \mathbf{A} \otimes J_{n+1} \rightsquigarrow$ polynomial in $\left(T_{1}^{n}, T_{2}^{n}\right)$

The family $\left(h_{n}\right)_{n}$ is called the left bound of $\langle X \mid R\rangle$
Proposition: if $\langle X \mid R\rangle$ is side-confluent iff the reduction relations hold
Moreover, the extra-condition implies the reduction relations

Theorem

Let \mathbf{A} be an homogeneous algebra satisfying the extra-condition and admitting a side-confluent presentation $\langle X \mid R\rangle$. Then, the left bound of $\langle X \mid R\rangle$ is a contracting homotopy for the Koszul complex of \mathbf{A}

A constructive proof of the Berger's criterion

Objective: constructive proof of Berger's criterion through a contracting homotopy

$$
\begin{gathered}
\rightsquigarrow h_{n}: \mathbf{A} \otimes J_{n} \rightarrow \mathbf{A} \otimes J_{n+1} \quad \text { s.t. } \quad \partial_{n} h_{n+1}+h_{n} \partial_{n-1}=\mathrm{id}_{\mathbf{A} \otimes J_{n}} \\
\Rightarrow \quad \operatorname{ker}\left(\partial_{n-1}\right) \quad=\quad \operatorname{im}\left(\partial_{n}\right)
\end{gathered}
$$

Construction: given $\mathbf{A}=\mathbb{K}\langle X \mid R\rangle$ homogeneous and $<$ a monomial order

- $S:=\operatorname{ker}^{-1}(\mathbb{K} R) \in \mathbf{R O}\left(X^{*},<\right)$
- $T_{1}^{n}, T_{2}^{n} \rightsquigarrow$ formulas using S and lattice operations
- $h_{n}: \mathbf{A} \otimes J_{n} \rightarrow \mathbf{A} \otimes J_{n+1} \rightsquigarrow$ polynomial in $\left(T_{1}^{n}, T_{2}^{n}\right)$

The family $\left(h_{n}\right)_{n}$ is called the left bound of $\langle X \mid R\rangle$
Proposition: if $\langle X \mid R\rangle$ is side-confluent iff the reduction relations hold
Moreover, the extra-condition implies the reduction relations

Theorem

Let \mathbf{A} be an homogeneous algebra satisfying the extra-condition and admitting a side-confluent presentation $\langle X \mid R\rangle$. Then, the left bound of $\langle X \mid R\rangle$ is a contracting homotopy for the Koszul complex of \mathbf{A}

A constructive proof of the Berger's criterion

Objective: constructive proof of Berger's criterion through a contracting homotopy

$$
\begin{gathered}
\rightsquigarrow h_{n}: \mathbf{A} \otimes J_{n} \rightarrow \mathbf{A} \otimes J_{n+1} \quad \text { s.t. } \quad \partial_{n} h_{n+1}+h_{n} \partial_{n-1}=\mathrm{id}_{\mathbf{A} \otimes J_{n}} \\
\Rightarrow \quad \operatorname{ker}\left(\partial_{n-1}\right) \quad=\quad \operatorname{im}\left(\partial_{n}\right)
\end{gathered}
$$

Construction: given $\mathbf{A}=\mathbb{K}\langle X \mid R\rangle$ homogeneous and $<$ a monomial order

- $S:=\operatorname{ker}^{-1}(\mathbb{K} R) \in \mathbf{R O}\left(X^{*},<\right)$
- $T_{1}^{n}, T_{2}^{n} \rightsquigarrow$ formulas using S and lattice operations
- $h_{n}: \mathbf{A} \otimes J_{n} \rightarrow \mathbf{A} \otimes J_{n+1} \rightsquigarrow$ polynomial in $\left(T_{1}^{n}, T_{2}^{n}\right)$

The family $\left(h_{n}\right)_{n}$ is called the left bound of $\langle X \mid R\rangle$
Proposition: if $\langle X \mid R\rangle$ is side-confluent iff the reduction relations hold
Moreover, the extra-condition implies the reduction relations

Theorem

Let \mathbf{A} be an homogeneous algebra satisfying the extra-condition and admitting a side-confluent presentation $\langle X \mid R\rangle$. Then, the left bound of $\langle X \mid R\rangle$ is a contracting homotopy for the Koszul complex of \mathbf{A}

IV. CONCLUSION

Summary

Summary of presented results:

- lattice descriptions of confluence and completion
- lattice computation of syzygies
- construction of a contracting homotopy for the Koszul complex

Related results:

- lattice formulation of the noncommutative F_{4} algorithm
- lattice classification of quotients of the magmatic operad
- representation theory of topological rew. systems applied to formal power series

THANK YOU FOUR LISTENING!

Summary

Summary of presented results:

- lattice descriptions of confluence and completion
- lattice computation of syzygies
- construction of a contracting homotopy for the Koszul complex

Related results:

- lattice formulation of the noncommutative F_{4} algorithm
- lattice classification of quotients of the magmatic operad
- representation theory of topological rew. systems applied to formal power series

THANK YOU FOUR LISTENING!

