Normal forms of matrix words for stability analysis of discrete-time switched linear systems

Cyrille Chenavier ${ }^{1} \quad$ Rosane Ushirobira ${ }^{2} \quad$ Laurentiu Hetel ${ }^{3}$
${ }^{1}$ Johannes Kepler Universität, Linz, Austria ${ }^{2}$ Inria, France ${ }^{3}$ CNRS, U. Lille, France

European Control Conference, ECC 2020
Saint Petersburg, Russia, May 12-15, 2020

Discrete-time switched linear systems

A discrete-time switched linear system is given by

$$
x_{k+1}=A_{\sigma(k)} x_{k}, \quad k \in \mathbb{N}, \quad x_{0} \in \mathbb{R}^{n}
$$

where

- $x: \mathbb{N} \rightarrow \mathbb{R}^{n}$ represents the state variable, $x(0)=x_{0}$ is the initial state
- $A_{1}, \cdots, A_{p} \in \mathbb{R}^{n \times n}$ are matrices representing stable subsystems
- $\sigma: \mathbb{N} \rightarrow\left\{A_{1}, \cdots, A_{p}\right\}$ is the switching function (not known)

Problem

Analyse global uniform exponential stability (GUES) of such systems
\rightsquigarrow do any trajectory converges to 0 with exponential decay?

Existing stability analysis methods

- Joint spectral radius (Blondel)
- Lie algebraic conditions (Liberzon, Gurvitz)
- Set theoretic approach (Megretski, Kruszewski, Guerra)
- Lyapunov functions (sufficient condition)

Megretski's method

- Requires to solve LMIs problem
- LMIs are indexed by matrix words

Trajectories

The trajectory associated to the switching

$$
\sigma(1)=i_{1} \in\{1, \cdots, p\}, \quad \sigma(2)=i_{2} \in\{1, \cdots, p\}, \cdots
$$

has the form

$$
x_{0} \rightarrow A_{i_{1}} x_{0} \rightarrow A_{i_{2}} A_{i_{1}} x_{0} \rightarrow A_{i_{3}} A_{i_{2}} A_{i_{1}} x_{0} \rightarrow \cdots
$$

Matrix representation of finite trajectories

If $w=i_{k} \cdots i_{1}$ is a k-length word over $\{1, \cdots, p\} \rightsquigarrow A_{w}:=A_{i_{k}} \cdots A_{i_{2}} A_{i_{1}}$

- Example:

$$
A_{1}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \quad A_{2}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

then

$$
\begin{gathered}
A_{11}=A_{1} A_{1}=\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right), \quad A_{12}=A_{1} A_{2}=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right), \quad A_{21}=A_{2} A_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right), \\
A_{22}=A_{2} A_{2}=\mathrm{Id}_{2}
\end{gathered}
$$

Theorem [Megretski, '97]

The discrete-time switched linear system is GUES if and only if
$\exists N>0$ and $P=P^{T} \succ 0$ s.t. the following LMIs problem admits a solution

$$
P \succ A_{w}^{T} P A_{w}, \quad \forall w=i_{N} \cdots i_{1}
$$

Remark: the size of LMIs grows exponentially (p^{N} words of length N)

Contribution of the work

Use linear algebra methods to reduce the size of the LMIs problem

- Motivation: assume that $P=P^{T} \succ 0$ solves LMIs for $A_{w_{1}}, \cdots A_{w_{r}}$ and

$$
A_{w_{0}}=\sum_{i=1}^{r} \lambda_{i} A_{w_{i}}
$$

Under which conditions P also solves the LMI for $A_{w_{0}}$?

Definition

Let N be an integer and

$$
d_{N}:=\operatorname{dim}\left(\operatorname{Vect}\left(A_{w}: w=i_{N} \cdots i_{1}\right)\right) \subseteq \mathbb{R}^{n \times n}
$$

A free set of matrices $A_{w_{1}}, \cdots A_{w_{d_{N}}}$ is called a set of normal form matrices

Remark

If A_{w} is not a normal form matrix, it admits a unique decomposition

$$
A_{w}=\sum_{i=1}^{d_{N}} \lambda_{i}^{w} A_{w_{i}}
$$

Question: how to use linear algebra to restrict LMIs to normal form matrices?

1st candidate for a new LMIs problem

Let $N>0$ and $A_{w_{1}}, \cdots A_{w_{d_{N}}}$ be normal form matrices

$$
\exists P=P^{T} \succ 0 \text { s.t. } P \succ A_{w_{i}}^{T} P A_{w_{i}}, \quad 1 \leq i \leq d_{N}
$$

Remark: the number of LMIs is bounded by the constant $n^{2}\left(d_{N} \leq n^{2}\right)$

Problem

If the decomposition of a non normal form matrix

$$
A_{w}=\sum_{i=1}^{d_{N}} \lambda_{i}^{w} A_{w_{i}}
$$

involves "big" coefficients, $P \succ A_{w}^{T} P A_{w}$ does not hold
The LMIs problem has to take λ_{i}^{w} 's into account

Lemma

If P is a solution to the LMIs problem

$$
\exists P=P^{T} \succ 0 \text { s.t. } P \succ A_{i}^{T} P A_{i}, \quad 1 \leq i \leq d_{N}
$$

Then, $P \succ A^{T} P A$ holds for every A is the convex hull of A_{i} 's

2nd candidate for a new LMIs problem

Let $N>0$ and $A_{w_{1}}, \cdots, A_{w_{d_{N}}}$ be normal form matrices

$$
\exists P=P^{T} \succ 0 \text { s.t. } P \succ \mu_{i} A_{w_{i}}^{T} P A_{w_{i}}, \quad 1 \leq i \leq d_{N}
$$

where μ_{i} 's are such that
"linear combinations are transformed into convex decompositions"

From linear to convex decompositions

Start with a linear combination of a non normal form matrix

$$
A_{w}=\sum_{i=1}^{d_{N}} \lambda_{i}^{w} A_{w_{i}}
$$

Letting $n_{w}:=\left|\lambda_{1}^{w}\right|+\cdots+\left|\lambda_{n}^{w}\right|$, we get the following convex decomposition

$$
A_{w}=\sum_{i=1}^{d_{N}} \frac{\left|\lambda_{i}^{w}\right|}{n_{w}}\left(\varepsilon\left(\lambda_{i}^{w}\right) n_{w} A_{w_{i}}\right)
$$

Choices for μ_{i} 's

First choice: all μ_{i} 's are equal to $\max \left(n_{w}: A_{w}\right.$ is not a normal form matrix)
A more optimal choice: $\mu_{i}=\max \left(n_{w}: A_{w}\right.$ is not a normal form matrix and $\left.\lambda_{i}^{w} \neq 0\right)$

Theorem

Consider the discrete-time switched linear system

$$
\begin{equation*}
x_{k+1}=A_{\sigma(k)} x_{k}, \quad k \in \mathbb{N}, \quad x_{0} \in \mathbb{R}^{n} \tag{1}
\end{equation*}
$$

Let N be a strictly positive integer and let $A_{1}, \cdots, A_{d_{N}}$ be normal form matrices. For every non normal form matrix A_{w}, let us consider its unique decomposition

$$
A_{w}=\sum_{i=1}^{d_{N}} \lambda_{i}^{w} A_{w_{i}}
$$

and for every $1 \leq i \leq d_{N}$, let

$$
\mu_{i}:=\max \left(n_{w}: A_{w} \text { is not a normal form matrix and } \lambda_{i}^{w} \neq 0\right)
$$

If the following LMIs problem admits a solution

$$
\exists P=P^{T} \succ 0 \text { s.t. } P \succ \mu_{i} A_{w_{i}}^{T} P A_{w_{i}}, \quad 1 \leq i \leq d_{N}
$$

then (1) is GUES

Example

Consider the discrete-time switched linear system defined with $p=2$ and $A_{i}=\exp \left(A_{i}^{c} T\right)$, with $T=1$, where

$$
A_{1}^{c}=\left(\begin{array}{cc}
-1 & -1 \\
1 & -1
\end{array}\right), \quad A_{2}^{c}=\left(\begin{array}{cc}
-1 & -a \\
\frac{1}{a} & -1
\end{array}\right)
$$

Changing the value of the parameter a, we get

	$a=5$	$a=6$	$a=7$	$a=8$	\#LMI conditions
$\mathrm{N}=1$	\checkmark	-	-	-	2
$\mathrm{~N}=3$	\checkmark	\checkmark	-	-	9
$\mathrm{~N}=8$	\checkmark	\checkmark	\checkmark	\checkmark	257

where \checkmark means that a solution to the LMIs problem was obtained, and - not

- We investigated stability of discrete-time switched linear systems using linear algebra techniques
- Our approach may be used to reduce drastically the number of LMI's conditions to check stability
- The counter-part of the approach is that LMI's are have higher numerical constraints

THANK YOU!

