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Motivation

Discrete-time switched linear systems

A discrete-time switched linear system is given by

xk+1 = Aσ(k)xk , k ∈ N, x0 ∈ Rn

where
• x : N→ Rn represents the state variable, x(0) = x0 is the initial state

• A1, · · · ,Ap ∈ Rn×n are matrices representing stable subsystems

• σ : N→ {A1, · · · ,Ap} is the switching function (not known)

Problem

Analyse global uniform exponential stability (GUES) of such systems

 do any trajectory converges to 0 with exponential decay?
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Stability analysis methods

Existing stability analysis methods

• Joint spectral radius (Blondel)

• Lie algebraic conditions (Liberzon, Gurvitz)

• Set theoretic approach (Megretski, Kruszewski, Guerra)

• Lyapunov functions (sufficient condition)

Megretski’s method

• Requires to solve LMIs problem

• LMIs are indexed by matrix words
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Word representation of trajectories

Trajectories

The trajectory associated to the switching

σ(1) = i1 ∈ {1, · · · , p}, σ(2) = i2 ∈ {1, · · · , p}, · · ·

has the form
x0 → Ai1 x0 → Ai2 Ai1 x0 → Ai3 Ai2 Ai1 x0 → · · ·

Matrix representation of finite trajectories

If w = ik · · · i1 is a k-length word over {1, · · · , p}  Aw := Aik · · ·Ai2 Ai1

• Example:

A1 =
(
1 1
0 1

)
, A2 =

(
0 1
1 0

)
then

A11 = A1A1 =
(
1 2
0 1

)
, A12 = A1A2 =

(
1 1
1 0

)
, A21 = A2A1 =

(
0 1
1 1

)
,

A22 = A2A2 = Id2
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A LMIs criterion for GUES

Theorem [Megretski, ’97]

The discrete-time switched linear system is GUES if and only if

∃N > 0 and P = PT � 0 s.t. the following LMIs problem admits a solution

P � AT
w PAw , ∀w = iN · · · i1

Remark: the size of LMIs grows exponentially (pN words of length N)

Contribution of the work

Use linear algebra methods to reduce the size of the LMIs problem

• Motivation: assume that P = PT � 0 solves LMIs for Aw1 , · · ·Awr and

Aw0 =
r∑

i=1

λi Awi

Under which conditions P also solves the LMI for Aw0?
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Normal forms matrices

Definition

Let N be an integer and

dN := dim (Vect(Aw : w = iN · · · i1)) ⊆ Rn×n

A free set of matrices Aw1 , · · ·AwdN
is called a set of normal form matrices

Remark

If Aw is not a normal form matrix, it admits a unique decomposition

Aw =
dN∑
i=1

λw
i Awi

Question: how to use linear algebra to restrict LMIs to normal form matrices?
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Candidates for a new LMIs problem

1st candidate for a new LMIs problem

Let N > 0 and Aw1 , · · ·AwdN
be normal form matrices

∃P = PT � 0 s.t. P � AT
wi PAwi , 1 ≤ i ≤ dN

Remark: the number of LMIs is bounded by the constant n2 (dN ≤ n2)

Problem

If the decomposition of a non normal form matrix

Aw =
dN∑
i=1

λw
i Awi

involves "big" coefficients, P � AT
w PAw does not hold

The LMIs problem has to take λw
i ’s into account
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Candidates for a new LMIs problem

Lemma

If P is a solution to the LMIs problem

∃P = PT � 0 s.t. P � AT
i PAi , 1 ≤ i ≤ dN

Then, P � AT PA holds for every A is the convex hull of Ai ’s

2nd candidate for a new LMIs problem

Let N > 0 and Aw1 , · · · ,AwdN
be normal form matrices

∃P = PT � 0 s.t. P � µi AT
wi PAwi , 1 ≤ i ≤ dN

where µi ’s are such that

"linear combinations are transformed into convex decompositions"
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Candidates for a new LMIs problem

From linear to convex decompositions

Start with a linear combination of a non normal form matrix

Aw =
dN∑
i=1

λw
i Awi

Letting nw :=| λw
1 | + · · ·+ | λw

n |, we get the following convex decomposition

Aw =
dN∑
i=1

| λw
i |

nw
(ε(λw

i )nw Awi )

Choices for µi ’s

First choice: all µi ’s are equal to max(nw : Aw is not a normal form matrix)

A more optimal choice: µi = max(nw : Aw is not a normal form matrix and λw
i 6= 0)
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Main result

Theorem

Consider the discrete-time switched linear system

xk+1 = Aσ(k)xk , k ∈ N, x0 ∈ Rn (1)

Let N be a strictly positive integer and let A1, · · · ,AdN be normal form matrices. For
every non normal form matrix Aw , let us consider its unique decomposition

Aw =
dN∑
i=1

λw
i Awi

and for every 1 ≤ i ≤ dN , let

µi := max(nw : Aw is not a normal form matrix and λw
i 6= 0)

If the following LMIs problem admits a solution

∃P = PT � 0 s.t. P � µi AT
wi PAwi , 1 ≤ i ≤ dN

then (1) is GUES
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Numerical example

Example

Consider the discrete-time switched linear system defined with p = 2 and
Ai = exp(Ac

i T ), with T = 1, where

Ac
1 =

(
−1 −1
1 −1

)
, Ac

2 =
(
−1 −a

1
a −1

)
Changing the value of the parameter a, we get

a=5 a=6 a=7 a=8 #LMI conditions
N=1 X - - - 2
N=3 X X - - 9
N=8 X X X X 257

where X means that a solution to the LMIs problem was obtained, and − not
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Conclusion

• We investigated stability of discrete-time switched linear systems using linear algebra
techniques

• Our approach may be used to reduce drastically the number of LMI’s conditions to
check stability

• The counter-part of the approach is that LMI’s are have higher numerical constraints

THANK YOU!
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