Quotients of the magmatic operad: lattice structures and convergent rewrite systems

Cyrille Chenavier¹ Christophe Cordero² Samuele Giraudo²

¹INRIA Lille - Nord Europe, Équipe GAIA

²Université Paris-Est Marne-la-Vallée, LIGM

December 20, 2018

Plan

I. Motivations

- Motivating example: an oscillating Hilbert series
- Nonsymmetric operads
- Presentations and Gröbner bases for operads

II. Magmatic quotients

- ▷ The category of magmatic quotients
- The lattice of magmatic quotients
- A Grassmann formula analog

III. Comb associative operads

- Definition of CAs operads
- The lattice of CAs operads
- Completion of CAs operads

IV. Conclusion and perspectives

Motivations

Plan

I. Motivations

C.Chenavier, C.Cordero, S.Giraudo

- Our motivating example: the operad CAs⁽³⁾;
 - ▶ definition given in Section III.

- Our motivating example: the operad CAs⁽³⁾;
 - ▷ definition given in Section III.

• By computer explorations, the first terms of the Hilbert series are:

degrees	2	3	4	5	6	7	8	9	10	11	12	13	14
coefficients	1	2	4	8	14	20	19	16	14	14	15	16	17

- Our motivating example: the operad CAs⁽³⁾;
 - ▶ definition given in Section III.

▶ By computer explorations, the first terms of the Hilbert series are:

degrees	2	3	4	5	6	7	8	9	10	11	12	13	14
coefficients	1	2	4	8	14	20	19	16	14	14	15	16	17

► Two questions:

- What does explain this oscillation?
- ▷ Is this possible to have a complete description of this series?

- Our motivating example: the operad CAs⁽³⁾;
 - ▶ definition given in Section III.
- By computer explorations, the first terms of the Hilbert series are:

degrees	2	3	4	5	6	7	8	9	10	11	12	13	14
coefficients	1	2	4	8	14	20	19	16	14	14	15	16	17

- Two questions:
 - What does explain this oscillation?
 - Is this possible to have a complete description of this series?
- Hilbert series may be computed using Gröbner bases, that are terminating and confluent rewrite systems

- Our motivating example: the operad CAs⁽³⁾;
 - definition given in Section III.
- ▶ By computer explorations, the first terms of the Hilbert series are:

degrees	2	3	4	5	6	7	8	9	10	11	12	13	14
coefficients	1	2	4	8	14	20	19	16	14	14	15	16	17

- ► Two questions:
 - What does explain this oscillation?
 - ▷ Is this possible to have a complete description of this series?
- Hilbert series may be computed using Gröbner bases, that are terminating and confluent rewrite systems;
 - counting normal forms.

- Our motivating example: the operad CAs⁽³⁾;
 - definition given in Section III.
- By computer explorations, the first terms of the Hilbert series are:

degrees	2	3	4	5	6	7	8	9	10	11	12	13	14
coefficients	1	2	4	8	14	20	19	16	14	14	15	16	17

- Two questions:
 - What does explain this oscillation?
 - ▷ Is this possible to have a complete description of this series?
- Hilbert series may be computed using Gröbner bases, that are terminating and confluent rewrite systems;
 - counting normal forms.
- Is the operad CAs⁽³⁾ presented by a finite Gröbner basis?

- Our motivating example: the operad CAs⁽³⁾;
 - definition given in Section III.

▶ By computer explorations, the first terms of the Hilbert series are:

degrees	2	3	4	5	6	7	8	9	10	11	12	13	14
coefficients	1	2	4	8	14	20	19	16	14	14	15	16	17

Two questions:

- What does explain this oscillation?
- Is this possible to have a complete description of this series?
- Hilbert series may be computed using Gröbner bases, that are terminating and confluent rewrite systems;
 - ▷ counting normal forms.
- ▶ Is the operad **CAs**⁽³⁾ presented by a finite Gröbner basis?
 - \triangleright Yes: using the Buchberger/Knuth-Bendix's completion procedure.

$$\mathscr{O} = \bigoplus_{n \in \mathbb{N}} \mathscr{O}(n),$$

together with

- \triangleright a distinguished element $\mathbf{1} \in \mathscr{O}(1);$
- ▷ partial compositions $\circ_i : \mathscr{O}(n) \otimes \mathscr{O}(m) \to \mathscr{O}(n+m-1), \forall 1 \leq i \leq n;$

satisfying axioms (next slide).

$$\mathscr{O} = \bigoplus_{n \in \mathbb{N}} \mathscr{O}(n),$$

together with

- \triangleright a distinguished element $\mathbf{1} \in \mathscr{O}(1);$
- ▷ partial compositions $\circ_i : \mathscr{O}(n) \otimes \mathscr{O}(m) \to \mathscr{O}(n+m-1), \forall 1 \leq i \leq n;$

satisfying axioms (next slide).

$$\mathscr{O} = \bigoplus_{n \in \mathbb{N}} \mathscr{O}(n),$$

together with

- \triangleright a distinguished element $\mathbf{1} \in \mathscr{O}(1)$;
- ▷ partial compositions $\circ_i : \mathscr{O}(n) \otimes \mathscr{O}(m) \to \mathscr{O}(n+m-1), \forall 1 \leq i \leq n;$

satisfying axioms (next slide).

Example: the operad End_V of (multi-)linear mappings on the vector space V;

$$\triangleright \; \operatorname{End}_V(n) := \operatorname{Hom}\left(V^{\otimes n}, V\right)$$

$$\mathscr{O} = \bigoplus_{n \in \mathbb{N}} \mathscr{O}(n),$$

together with

- \triangleright a distinguished element $\mathbf{1} \in \mathscr{O}(1)$;
- ▷ partial compositions $\circ_i : \mathscr{O}(n) \otimes \mathscr{O}(m) \to \mathscr{O}(n+m-1), \forall 1 \leq i \leq n;$

satisfying axioms (next slide).

Example: the operad End_V of (multi-)linear mappings on the vector space V;

▷
$$\operatorname{End}_V(n) := \operatorname{Hom}\left(V^{\otimes n}, V\right) \ni \mathbf{x} : (v_1, \cdots, v_n) \mapsto \mathbf{x}(v_1, \cdots, v_n);$$

$$\mathscr{O} = \bigoplus_{n \in \mathbb{N}} \mathscr{O}(n),$$

together with

- \triangleright a distinguished element $\mathbf{1} \in \mathscr{O}(1);$
- ▷ partial compositions $\circ_i : \mathscr{O}(n) \otimes \mathscr{O}(m) \to \mathscr{O}(n+m-1), \forall 1 \leq i \leq n;$

satisfying axioms (next slide).

Example: the operad End_V of (multi-)linear mappings on the vector space V;

- $\triangleright \operatorname{End}_{V}(n) := \operatorname{Hom}\left(V^{\otimes n}, V\right) \ni \mathbf{x} : (v_{1}, \cdots, v_{n}) \mapsto \mathbf{x}(v_{1}, \cdots, v_{n});$
- $\triangleright \operatorname{End}_V(1) \ni \mathbf{1} = \operatorname{id}_V : v \mapsto v;$

$$\mathscr{O} = \bigoplus_{n \in \mathbb{N}} \mathscr{O}(n),$$

together with

- \triangleright a distinguished element $\mathbf{1} \in \mathscr{O}(1)$;
- ▷ partial compositions $\circ_i : \mathscr{O}(n) \otimes \mathscr{O}(m) \to \mathscr{O}(n+m-1), \forall 1 \leq i \leq n;$

satisfying axioms (next slide).

Example: the operad End_V of (multi-)linear mappings on the vector space V;

- $\triangleright \operatorname{End}_{V}(n) := \operatorname{Hom} \left(V^{\otimes n}, V \right) \ni \mathbf{x} : (v_{1}, \cdots, v_{n}) \mapsto \mathbf{x} (v_{1}, \cdots, v_{n});$
- $\triangleright \operatorname{End}_V(1) \ni \mathbf{1} = \operatorname{id}_V : v \mapsto v;$

 $\forall \mathbf{x} \in \operatorname{End}_{V}(n), \ \mathbf{y} \in \operatorname{End}_{V}(m), \ 1 \leq \mathbf{i} \leq n,$ $\mathbf{x} \circ_{\mathbf{i}} \mathbf{y} : (\mathbf{v}_{1}, \cdots, \mathbf{v}_{n+m-1}) \mapsto \mathbf{x} (\mathbf{v}_{1}, \cdots, \mathbf{v}_{i-1}, \mathbf{y}(\mathbf{v}_{i}, \cdots, \mathbf{v}_{i+m-1}), \mathbf{v}_{i+m}, \cdots, \mathbf{v}_{m+n-1}).$

$$\mathscr{O} = \bigoplus_{n \in \mathbb{N}} \mathscr{O}(n),$$

together with

- \triangleright a distinguished element $\mathbf{1} \in \mathscr{O}(1)$;
- ▷ partial compositions $\circ_i : \mathscr{O}(n) \otimes \mathscr{O}(m) \to \mathscr{O}(n+m-1), \forall 1 \leq i \leq n;$

satisfying axioms (next slide).

Example: the operad End_V of (multi-)linear mappings on the vector space V;

- $\triangleright \operatorname{End}_{V}(n) := \operatorname{Hom} \left(V^{\otimes n}, V \right) \ni \mathbf{x} : (v_{1}, \cdots, v_{n}) \mapsto \mathbf{x} (v_{1}, \cdots, v_{n});$
- $\triangleright \ \operatorname{End}_V(1) \ni \mathbf{1} = \operatorname{id}_V : v \mapsto v;$

 $\forall \mathbf{x} \in \operatorname{End}_{V}(n), \ \mathbf{y} \in \operatorname{End}_{V}(m), \ 1 \leq \mathbf{i} \leq n,$ $\mathbf{x} \circ_{\mathbf{i}} \mathbf{y} : (v_{1}, \cdots, v_{n+m-1}) \mapsto \mathbf{x} (v_{1}, \cdots, v_{i-1}, \mathbf{y}(v_{i}, \cdots, v_{i+m-1}), v_{i+m}, \cdots, v_{m+n-1}).$

How to construct operads?

$$\mathscr{O} = \bigoplus_{n \in \mathbb{N}} \mathscr{O}(n),$$

together with

- \triangleright a distinguished element $\mathbf{1} \in \mathscr{O}(1)$;
- ▷ partial compositions $\circ_i : \mathscr{O}(n) \otimes \mathscr{O}(m) \to \mathscr{O}(n+m-1), \forall 1 \leq i \leq n;$

satisfying axioms (next slide).

Example: the operad End_V of (multi-)linear mappings on the vector space V;

- $\triangleright \operatorname{End}_{V}(n) := \operatorname{Hom}\left(V^{\otimes n}, V\right) \ni \mathbf{x} : (v_{1}, \cdots, v_{n}) \mapsto \mathbf{x}(v_{1}, \cdots, v_{n});$
- $\triangleright \operatorname{End}_V(1) \ni \mathbf{1} = \operatorname{id}_V : v \mapsto v;$

 $\forall \mathbf{x} \in \operatorname{End}_{V}(n), \ \mathbf{y} \in \operatorname{End}_{V}(m), \ 1 \leq \mathbf{i} \leq n,$ $\mathbf{x} \circ_{\mathbf{i}} \mathbf{y} : (v_{1}, \cdots, v_{n+m-1}) \mapsto \mathbf{x} (v_{1}, \cdots, v_{i-1}, \mathbf{y}(v_{i}, \cdots, v_{i+m-1}), v_{i+m}, \cdots, v_{m+n-1}).$

How to construct operads?

 $\triangleright \text{ Using presentations by generators and relations } \langle \mathscr{X} \mid \mathscr{R} \rangle.$

▶ The free operad $\mathscr{F}(\mathscr{X})$ over a graded set \mathscr{X} is constructed as follows:

 $\triangleright \ \mathscr{F}(\mathscr{X}) := \{ \text{linear combinations of syntactic trees} \}, \ 1: \ \text{the thread}; \\$

 $\triangleright \ \mathscr{F}(\mathscr{X}) := \{ \text{linear combinations of syntactic trees} \}, \ \mathbf{1}: \text{ the thread}; \\$

 $\triangleright \mathbf{x} \circ_i \mathbf{y}$: obtained by grafting the root of \mathbf{y} on the *i*-th leaf of \mathbf{x} .

 $\triangleright \ \mathscr{F}(\mathscr{X}) := \{ \text{linear combinations of syntactic trees} \}, \ 1: \ \text{the thread}; \\$

 \triangleright **x** \circ_i **y**: obtained by grafting the root of **y** on the *i*-th leaf of **x**.

 $\triangleright \ \mathscr{F}(\mathscr{X}) := \{ \text{linear combinations of syntactic trees} \}, \ \mathbf{1}: \ \text{the thread}; \\$

 \triangleright **x** \circ_i **y**: obtained by grafting the root of **y** on the *i*-th leaf of **x**.

The compositions satisfy axioms:

 $\triangleright \ \mathscr{F}(\mathscr{X}) := \{ \text{linear combinations of syntactic trees} \}, \ 1: \ \text{the thread}; \\$

▷ $\mathbf{x} \circ_i \mathbf{y}$: obtained by grafting the root of \mathbf{y} on the *i*-th leaf of \mathbf{x} .

The compositions satisfy axioms:

▷ neutrality of **1** for each \circ_i : **1** $\circ_1 \mathbf{x} = \mathbf{x} = \mathbf{x} \circ_i \mathbf{1}$;

 $\triangleright \ \mathscr{F}(\mathscr{X}) := \{ \text{linear combinations of syntactic trees} \}, \ 1: \ \text{the thread}; \\$

 $\triangleright \mathbf{x} \circ_i \mathbf{y}$: obtained by grafting the root of \mathbf{y} on the *i*-th leaf of \mathbf{x} .

The compositions satisfy axioms:

▷ neutrality of 1 for each \circ_i : $1 \circ_1 x = x = x \circ_i 1$;

▷ associativity of sequential compositions: $\mathbf{x} \circ_i (\mathbf{y} \circ_j \mathbf{z}) = (\mathbf{x} \circ_i \mathbf{y}) \circ_{i+j-1} \mathbf{z}$;

 $\triangleright \ \mathscr{F}(\mathscr{X}) := \{ \text{linear combinations of syntactic trees} \}, \ 1: \ \text{the thread}; \\$

 $\triangleright \mathbf{x} \circ_i \mathbf{y}$: obtained by grafting the root of \mathbf{y} on the *i*-th leaf of \mathbf{x} .

The compositions satisfy axioms:

- ▷ neutrality of 1 for each \circ_i : $1 \circ_1 x = x = x \circ_i 1$;
- ▷ associativity of sequential compositions: $\mathbf{x} \circ_i (\mathbf{y} \circ_j \mathbf{z}) = (\mathbf{x} \circ_i \mathbf{y}) \circ_{i+j-1} \mathbf{z}$;
- ▷ commutativity of parallel compositions: $(\mathbf{x} \circ_i \mathbf{y}) \circ_{j+m-1} \mathbf{z} = (\mathbf{x} \circ_j \mathbf{z}) \circ_i \mathbf{y}$, where i < j and m is the arity of \mathbf{y} .

▶ Given $\mathscr{R} \subseteq \mathscr{F}(\mathscr{X})$, the operad presented by $\langle \mathscr{X} \mid \mathscr{R} \rangle$ is constructed as follows:

- ▶ Given $\mathscr{R} \subseteq \mathscr{F}(\mathscr{X})$, the operad presented by $\langle \mathscr{X} \mid \mathscr{R} \rangle$ is constructed as follows:
 - ▷ $\equiv_{\mathscr{R}}$: the operadic congruence generated by \mathscr{R} , that is $\mathbf{x} \equiv_{\mathscr{R}} \mathbf{0}$ for every $\mathbf{x} \in \mathscr{R}$;

• Given $\mathscr{R} \subseteq \mathscr{F}(\mathscr{X})$, the operad presented by $\langle \mathscr{X} \mid \mathscr{R} \rangle$ is constructed as follows:

- ▷ $\equiv_{\mathscr{R}}$: the operadic congruence generated by \mathscr{R} , that is $\mathbf{x} \equiv_{\mathscr{R}} \mathbf{0}$ for every $\mathbf{x} \in \mathscr{R}$;
- $\triangleright \ \mathscr{I}(\mathscr{R}) := \{ \mathbf{x} \in \mathscr{F}(\mathscr{X}) \mid \mathbf{x} \equiv_{\mathscr{R}} \mathbf{0} \}: \text{ the operadic ideal generated by } \mathscr{R};$

• Given $\mathscr{R} \subseteq \mathscr{F}(\mathscr{X})$, the operad presented by $\langle \mathscr{X} \mid \mathscr{R} \rangle$ is constructed as follows:

- ▷ $\equiv_{\mathscr{R}}$: the operadic congruence generated by \mathscr{R} , that is $\mathbf{x} \equiv_{\mathscr{R}} \mathbf{0}$ for every $\mathbf{x} \in \mathscr{R}$;
- $\triangleright \ \mathscr{I}(\mathscr{R}) := \{ \mathbf{x} \in \mathscr{F}(\mathscr{X}) \mid \mathbf{x} \equiv_{\mathscr{R}} \mathbf{0} \}: \text{ the operadic ideal generated by } \mathscr{R};$

 $\triangleright \ \mathscr{O}\langle \mathscr{X} \mid \mathscr{R} \rangle := \mathscr{F}(\mathscr{X}) / \mathscr{I}(\mathscr{R}).$

Given R ⊆ F (X), the operad presented by ⟨X | R⟩ is constructed as follows:
≡_R: the operadic congruence generated by R, that is x ≡_R 0 for every x ∈ R;
J (R) := {x ∈ F (X) | x ≡_R 0}: the operadic ideal generated by R;
O(X | R) := F (X) / J (R).

1st example: the unital associative operad is presented by

Given R ⊆ F (X), the operad presented by ⟨X | R⟩ is constructed as follows:
≡_R: the operadic congruence generated by R, that is x ≡_R 0 for every x ∈ R;
J (R) := {x ∈ F (X) | x ≡_R 0}: the operadic ideal generated by R;
O(X | R) := F (X) / J (R).

▶ 1st example: the unital associative operad is presented by

▷ one 0-ary generator (→ the unit)

Given R ⊆ F (X), the operad presented by (X | R) is constructed as follows:
≡_R: the operadic congruence generated by R, that is x ≡_R 0 for every x ∈ R;
J (R) := {x ∈ F (X) | x ≡_R 0}: the operadic ideal generated by R;
O(X | R) := F(X) / J (R).

▶ 1st example: the **unital associative operad** is presented by

 \triangleright one 0-ary generator (\rightsquigarrow the unit) and one binary generator (\rightsquigarrow the multiplication);

Given R ⊆ F (X), the operad presented by ⟨X | R⟩ is constructed as follows:
≡_R: the operadic congruence generated by R, that is x ≡_R 0 for every x ∈ R;
I (R) := {x ∈ F (X) | x ≡_R 0}: the operadic ideal generated by R;
O(X | R) := F(X) / I (R).

- ▶ 1st example: the **unital associative operad** is presented by
 - \triangleright one 0-ary generator (\rightsquigarrow the unit) and one binary generator (\rightsquigarrow the multiplication);

the neutrality relations

$$\mathbf{Y} \equiv | \qquad \mathbf{Y} \equiv |$$
Given R ⊆ F (X), the operad presented by ⟨X | R⟩ is constructed as follows:
≡_R: the operadic congruence generated by R, that is x ≡_R 0 for every x ∈ R;
I (R) := {x ∈ F (X) | x ≡_R 0}: the operadic ideal generated by R;
O(X | R) := F(X) / I (R).

- ▶ 1st example: the **unital associative operad** is presented by
 - \triangleright one 0-ary generator (\rightsquigarrow the unit) and one binary generator (\rightsquigarrow the multiplication);

b the neutrality relations and the associativity relation;

$$\mathbf{Y} \equiv | \qquad \mathbf{Y} \equiv | \qquad \mathbf{Y} \equiv |$$

Given R ⊆ F (X), the operad presented by ⟨X | R⟩ is constructed as follows:
≡_R: the operadic congruence generated by R, that is x ≡_R 0 for every x ∈ R;
J (R) := {x ∈ F (X) | x ≡_R 0}: the operadic ideal generated by R;
O(X | R) := F(X) / J (R).

- \blacktriangleright 1st example: the unital associative operad is presented by
 - \triangleright one 0-ary generator (\rightsquigarrow the unit) and one binary generator (\rightsquigarrow the multiplication);

b the neutrality relations and the associativity relation;

$$\mathbf{Y} \equiv | \qquad \mathbf{Y} \equiv | \qquad \mathbf{Y} \equiv |$$

• 2nd example: the **differential associative operad** is presented by

Given R ⊆ F (X), the operad presented by ⟨X | R⟩ is constructed as follows:
≡_R: the operadic congruence generated by R, that is x ≡_R 0 for every x ∈ R;
I (R) := {x ∈ F (X) | x ≡_R 0}: the operadic ideal generated by R;
O(X | R) := F(X) / I (R).

- 1st example: the unital associative operad is presented by
 - \triangleright one 0-ary generator (\rightsquigarrow the unit) and one binary generator (\rightsquigarrow the multiplication);

b the neutrality relations and the associativity relation;

$$\mathbf{Y} \equiv | \qquad \mathbf{Y} \equiv | \qquad \mathbf{Y} \equiv |$$

▶ 2nd example: the differential associative operad is presented by
 ▷ one 0-ary generator, one binary generator and one unary generator (~→ the differential);

Given R ⊆ F (X), the operad presented by ⟨X | R⟩ is constructed as follows:
≡_R: the operadic congruence generated by R, that is x ≡_R 0 for every x ∈ R;
I (R) := {x ∈ F (X) | x ≡_R 0}: the operadic ideal generated by R;
O(X | R) := F(X) / I (R).

- \blacktriangleright 1st example: the unital associative operad is presented by
 - \triangleright one 0-ary generator (\rightsquigarrow the unit) and one binary generator (\rightsquigarrow the multiplication);

b the neutrality relations and the associativity relation;

$$\mathbf{Y} \equiv | \qquad \mathbf{Y} \equiv | \qquad \mathbf{Y} \equiv \mathbf{Y}$$

▶ 2nd example: the differential associative operad is presented by
 ▷ one 0-ary generator, one binary generator and one unary generator (~→ the differential);

▷ the neutrality and associativity relations and the Leibniz's identity;

$$\overbrace{\mathbf{d}}^{\mathbf{d}} \equiv \overbrace{\mathbf{d}}^{\mathbf{d}} + \bigvee_{\mathbf{d}}^{\mathbf{d}}$$

- \triangleright convergent (i.e. terminating and confluent) rewrite systems on $\mathscr{F}(\mathscr{X})$;
- ▷ a confluence criterion: the Diamond's Lemma [Dotsenko-Khoroshkin 2010].

- \triangleright convergent (i.e. terminating and confluent) rewrite systems on $\mathscr{F}(\mathscr{X})$;
- ▷ a confluence criterion: the Diamond's Lemma [Dotsenko-Khoroshkin 2010].

Case of the untial associative operad:

> a Gröbner basis is induced by the rewrite rules:

$$\bigvee | \quad \bigvee \rightarrow \bigvee$$

- ▷ convergent (i.e. terminating and confluent) rewrite systems on $\mathscr{F}(\mathscr{X})$;
- ▷ a confluence criterion: the Diamond's Lemma [Dotsenko-Khoroshkin 2010].

Case of the untial associative operad:

> a Gröbner basis is induced by the rewrite rules:

- \triangleright convergent (i.e. terminating and confluent) rewrite systems on $\mathscr{F}(\mathscr{X})$;
- ▷ a confluence criterion: the Diamond's Lemma [Dotsenko-Khoroshkin 2010].

Case of the untial associative operad:

> a Gröbner basis is induced by the rewrite rules:

- ▷ convergent (i.e. terminating and confluent) rewrite systems on $\mathscr{F}(\mathscr{X})$;
- ▷ a confluence criterion: the Diamond's Lemma [Dotsenko-Khoroshkin 2010].

Case of the untial associative operad:

> a Gröbner basis is induced by the rewrite rules:

- ▷ convergent (i.e. terminating and confluent) rewrite systems on $\mathscr{F}(\mathscr{X})$;
- ▷ a confluence criterion: the Diamond's Lemma [Dotsenko-Khoroshkin 2010].

Case of the untial associative operad:

> a Gröbner basis is induced by the rewrite rules:

- ▷ convergent (i.e. terminating and confluent) rewrite systems on $\mathscr{F}(\mathscr{X})$;
- ▷ a confluence criterion: the Diamond's Lemma [Dotsenko-Khoroshkin 2010].

Case of the untial associative operad:

> a Gröbner basis is induced by the rewrite rules:

- ▷ convergent (i.e. terminating and confluent) rewrite systems on $\mathscr{F}(\mathscr{X})$;
- ▷ a confluence criterion: the Diamond's Lemma [Dotsenko-Khoroshkin 2010].

Case of the untial associative operad:

> a Gröbner basis is induced by the rewrite rules:

- ▷ convergent (i.e. terminating and confluent) rewrite systems on $\mathscr{F}(\mathscr{X})$;
- ▷ a confluence criterion: the Diamond's Lemma [Dotsenko-Khoroshkin 2010].

Case of the untial associative operad:

> a Gröbner basis is induced by the rewrite rules:

- ▷ convergent (i.e. terminating and confluent) rewrite systems on $\mathscr{F}(\mathscr{X})$;
- ▷ a confluence criterion: the Diamond's Lemma [Dotsenko-Khoroshkin 2010].

Case of the untial associative operad:

> a Gröbner basis is induced by the rewrite rules:

- ▷ convergent (i.e. terminating and confluent) rewrite systems on $\mathscr{F}(\mathscr{X})$;
- ▷ a confluence criterion: the Diamond's Lemma [Dotsenko-Khoroshkin 2010].

Case of the untial associative operad:

> a Gröbner basis is induced by the rewrite rules:

▷ indeed, all critical pairs are confluent; for instance

▷ some combinatorial consequences: right comb trees form a linear bases, the coefficients of the Hilbert series are equal to 1;

- ▷ convergent (i.e. terminating and confluent) rewrite systems on $\mathscr{F}(\mathscr{X})$;
- ▷ a confluence criterion: the Diamond's Lemma [Dotsenko-Khoroshkin 2010].

Case of the untial associative operad:

> a Gröbner basis is induced by the rewrite rules:

- ▷ some combinatorial consequences: right comb trees form a linear bases, the coefficients of the Hilbert series are equal to 1;
- ▷ a homological consequence: the nonunital associative operad is a Koszul operad.

- ▷ convergent (i.e. terminating and confluent) rewrite systems on $\mathscr{F}(\mathscr{X})$;
- ▷ a confluence criterion: the Diamond's Lemma [Dotsenko-Khoroshkin 2010].

Case of the untial associative operad:

> a Gröbner basis is induced by the rewrite rules:

- ▷ some combinatorial consequences: right comb trees form a linear bases, the coefficients of the Hilbert series are equal to 1;
- ▷ a homological consequence: the nonunital associative operad is a Koszul operad.
- Gröbner bases are computed by the Buchberger/Knuth-Bendix's completion procedure.

We study magmatic quotients

- We study magmatic quotients;
 - \triangleright the operad $\mathsf{CAs}^{(3)}$ belongs to a set of operads $\mathsf{CAs} := \big\{\mathsf{CAs}^{(\gamma)} \mid \gamma \geq 1\big\};$
 - ▷ **CAs** is included in the set of magmatic quotients.

- We study magmatic quotients;
 - ▷ the operad $CAs^{(3)}$ belongs to a set of operads $CAs := \left\{ CAs^{(\gamma)} \mid \gamma \ge 1 \right\}$;
 - ▷ **CAs** is included in the set of magmatic quotients.
- We introduce a lattice structure on magmatic quotients:
 - ▷ we define this structure in terms of morphisms between magmatic quotients;
 - ▷ we present a Grassmann formula analog for this lattice.

- We study magmatic quotients;
 - ▷ the operad $CAs^{(3)}$ belongs to a set of operads $CAs := \left\{ CAs^{(\gamma)} \mid \gamma \geq 1 \right\}$;
 - ▷ **CAs** is included in the set of magmatic quotients.
- We introduce a lattice structure on magmatic quotients:
 - ▷ we define this structure in terms of morphisms between magmatic quotients;
 - ▷ we present a Grassmann formula analog for this lattice.
- We study the induced poset on **CAs**:
 - we present new lattice operations on this poset;
 - ▷ we study the existence of finite Gröbner bases for $CAs^{(\gamma)}$ operads;
 - \triangleright we deduce the complete expression of the Hilbert series of CAs⁽³⁾.

Plan

II. Lattice of magmatic quotients

▶ \mathbb{K} : a fixed field s.t. char $(\mathbb{K}) \neq 2$.

▶ The magmatic operad KMag is the free operad over one binary generator.

- ▶ \mathbb{K} : a fixed field s.t. char $(\mathbb{K}) \neq 2$.
- \blacktriangleright The magmatic operad $\mathbb{K}\textbf{Mag}$ is the free operad over one binary generator.
- A magmatic quotient is a quotient operad $\mathcal{O} = \mathbb{K}Mag/I$.

- ▶ \mathbb{K} : a fixed field s.t. char $(\mathbb{K}) \neq 2$.
- ▶ The magmatic operad KMag is the free operad over one binary generator.
- A magmatic quotient is a quotient operad $\mathcal{O} = \mathbb{K} Mag/I$.
 - ▷ Alternatively: it is an operad over one binary generator $[\star]_I$.

- ▶ \mathbb{K} : a fixed field s.t. char $(\mathbb{K}) \neq 2$.
- ▶ The magmatic operad KMag is the free operad over one binary generator.
- A magmatic quotient is a quotient operad $\mathcal{O} = \mathbb{K} Mag/I$.
 - ▷ Alternatively: it is an operad over one binary generator $[\star]_I$.
 - $\triangleright \ \mathcal{Q}(\mathbb{K}Mag) := \{ magmatic quotients \}.$

- \mathbb{K} : a fixed field s.t. char $(\mathbb{K}) \neq 2$.
- ▶ The magmatic operad KMag is the free operad over one binary generator.
- A magmatic quotient is a quotient operad $\mathcal{O} = \mathbb{K} Mag/I$.
 - ▷ Alternatively: it is an operad over one binary generator [*]₁.
 - $\triangleright \ \mathcal{Q}(\mathbb{K}Mag) := \{ magmatic quotients \}.$

Lemma. Given $\mathscr{O}_1 = \mathbb{K}\mathsf{Mag}/_{l_1}$ and $\mathscr{O}_2 = \mathbb{K}\mathsf{Mag}_{l_2}$, we have dim $(\mathsf{Hom}(\mathscr{O}_1, \mathscr{O}_2)) \leq 1$.

- \mathbb{K} : a fixed field s.t. char $(\mathbb{K}) \neq 2$.
- ▶ The magmatic operad KMag is the free operad over one binary generator.

A magmatic quotient is a quotient operad $\mathcal{O} = \mathbb{K}\mathbf{Mag}/I$.

▷ Alternatively: it is an operad over one binary generator [*]₁.

 $\triangleright \ \mathcal{Q}(\mathbb{K}Mag) := \{ magmatic quotients \}.$

Lemma. Given $\mathcal{O}_1 = \mathbb{K} \operatorname{Mag}_{I_1}$ and $\mathcal{O}_2 = \mathbb{K} \operatorname{Mag}_{I_2}$, we have dim $(\operatorname{Hom}(\mathcal{O}_1, \mathcal{O}_2)) \leq 1$.

Sketch of proof. Let $\varphi \in \text{Hom}(\mathscr{O}_1, \mathscr{O}_2)$,

▷ taking arities into account: $\exists \lambda \in \mathbb{K}$, s.t. $\varphi([\star]_{l_1}) = \lambda[\star]_{l_2}$;

- \mathbb{K} : a fixed field s.t. char $(\mathbb{K}) \neq 2$.
- ▶ The magmatic operad KMag is the free operad over one binary generator.

A magmatic quotient is a quotient operad $\mathcal{O} = \mathbb{K}\mathbf{Mag}/I$.

▷ Alternatively: it is an operad over one binary generator [*]₁.

 $\triangleright \ \mathcal{Q}(\mathbb{K}Mag) := \{ magmatic quotients \}.$

Lemma. Given $\mathscr{O}_1 = \mathbb{K}\mathsf{Mag}/_{l_1}$ and $\mathscr{O}_2 = \mathbb{K}\mathsf{Mag}_{l_2}$, we have dim $(\mathsf{Hom}(\mathscr{O}_1, \mathscr{O}_2)) \leq 1$.

Sketch of proof. Let $\varphi \in \text{Hom}(\mathscr{O}_1, \mathscr{O}_2)$,

- ▷ taking arities into account: $\exists \lambda \in \mathbb{K}$, s.t. $\varphi([\star]_{l_1}) = \lambda[\star]_{l_2}$;
- ▷ by the universal property of the quotient: if $\lambda \neq 0$, then $I_1 \subseteq I_2$;

- \mathbb{K} : a fixed field s.t. char $(\mathbb{K}) \neq 2$.
- ▶ The magmatic operad KMag is the free operad over one binary generator.
- A magmatic quotient is a quotient operad $\mathcal{O} = \mathbb{K}\mathbf{Mag}/I$.
 - ▷ Alternatively: it is an operad over one binary generator [*]₁.
 - $\triangleright \ \mathcal{Q}(\mathbb{K}Mag) := \{ magmatic quotients \}.$

Lemma. Given $\mathscr{O}_1 = \mathbb{K}\mathsf{Mag}/_{l_1}$ and $\mathscr{O}_2 = \mathbb{K}\mathsf{Mag}_{l_2}$, we have dim $(\mathsf{Hom}(\mathscr{O}_1, \mathscr{O}_2)) \leq 1$.

Sketch of proof. Let $\varphi \in \text{Hom}(\mathscr{O}_1, \mathscr{O}_2)$,

- ▷ taking arities into account: $\exists \lambda \in \mathbb{K}$, s.t. $\varphi([\star]_{l_1}) = \lambda[\star]_{l_2}$;
- ▷ by the universal property of the quotient: if $\lambda \neq 0$, then $I_1 \subseteq I_2$;
- $\triangleright \text{ if } I_1 \subseteq I_2 \text{, then } \forall \mu \in \mathbb{K} \setminus \{0\}, \ \exists \psi \in \mathsf{Hom}\left(\mathscr{O}_1, \mathscr{O}_2\right) \text{ s.t. } \psi\left([\star]_{I_1}\right) = \mu[\star]_{I_2}.$

• \mathbb{K} : a fixed field s.t. char $(\mathbb{K}) \neq 2$.

▶ The magmatic operad KMag is the free operad over one binary generator.

A magmatic quotient is a quotient operad $\mathcal{O} = \mathbb{K}\mathbf{Mag}/I$.

▷ Alternatively: it is an operad over one binary generator [*]₁.

 $\triangleright \ \mathcal{Q}(\mathbb{K}Mag) := \{ magmatic quotients \}.$

Lemma. Given $\mathscr{O}_1 = \mathbb{K} \operatorname{Mag}_{I_1}$ and $\mathscr{O}_2 = \mathbb{K} \operatorname{Mag}_{I_2}$, we have dim $(\operatorname{Hom}(\mathscr{O}_1, \mathscr{O}_2)) \leq 1$.

Sketch of proof. Let $\varphi \in \text{Hom}(\mathscr{O}_1, \mathscr{O}_2)$,

- ▷ taking arities into account: $\exists \lambda \in \mathbb{K}$, s.t. $\varphi([\star]_{l_1}) = \lambda[\star]_{l_2}$;
- ▷ by the universal property of the quotient: if $\lambda \neq 0$, then $I_1 \subseteq I_2$;
- $\triangleright \text{ if } I_1 \subseteq I_2 \text{, then } \forall \mu \in \mathbb{K} \setminus \{0\}, \ \exists \psi \in \mathsf{Hom}\left(\mathscr{O}_1, \mathscr{O}_2\right) \text{ s.t. } \psi\left([\star]_{I_1}\right) = \mu[\star]_{I_2}.$

Remark. A nonzero operad morphism between magmatic quotients is surjective.

- Let $\mathscr{O}_1 = \mathbb{K}Mag/_{I_1}$ and $\mathscr{O}_2 = \mathbb{K}Mag/_{I_2}$;
 - ▷ we have dim (Hom $(\mathscr{O}_1, \mathscr{O}_2)) \leq 1$;
 - ▷ dim (Hom $(\mathcal{O}_1, \mathcal{O}_2)) = 1$ iff $I_1 \subseteq I_2$;
 - $\triangleright \ \dim \left(\mathsf{Hom} \left(\mathscr{O}_1, \mathscr{O}_2 \right) \right) = 1 \ \text{iff} \ \exists \varphi : \mathscr{O}_1 \to \mathscr{O}_2 \ \text{surjective}.$

- Let $\mathscr{O}_1 = \mathbb{K}Mag/_{I_1}$ and $\mathscr{O}_2 = \mathbb{K}Mag/_{I_2}$;
 - ▷ we have dim $(Hom(\mathscr{O}_1, \mathscr{O}_2)) \leq 1;$
 - $\triangleright \ \dim (\operatorname{Hom} (\mathscr{O}_1, \mathscr{O}_2)) = 1 \text{ iff } I_1 \subseteq I_2;$
 - $\triangleright \ \dim \left(\mathsf{Hom} \left(\mathscr{O}_1, \mathscr{O}_2 \right) \right) = 1 \text{ iff } \exists \varphi : \mathscr{O}_1 \to \mathscr{O}_2 \text{ surjective.}$
- ▶ Let $\leq_i \subsetneq \mathcal{Q}(\mathbb{K}Mag) \times \mathcal{Q}(\mathbb{K}Mag)$ defined by
 - $\triangleright \ \mathscr{O}_2 \preceq_i \mathscr{O}_1 \text{ iff dim} (\mathsf{Hom} (\mathscr{O}_1, \mathscr{O}_2)) = 1;$

- Let $\mathcal{O}_1 = \mathbb{K}\mathbf{Mag}/_{l_1}$ and $\mathcal{O}_2 = \mathbb{K}\mathbf{Mag}/_{l_2}$;
 - ▷ we have dim $(Hom(\mathscr{O}_1, \mathscr{O}_2)) \leq 1;$
 - ▷ dim (Hom $(\mathcal{O}_1, \mathcal{O}_2)) = 1$ iff $I_1 \subseteq I_2$;
 - $\triangleright \ \dim \left(\mathsf{Hom} \left(\mathscr{O}_1, \mathscr{O}_2 \right) \right) = 1 \text{ iff } \exists \varphi : \mathscr{O}_1 \to \mathscr{O}_2 \text{ surjective.}$

► Let $\leq_i \subseteq \mathcal{Q}(\mathbb{K}Mag) \times \mathcal{Q}(\mathbb{K}Mag)$ defined by $\mathcal{O}_2 \prec_i \mathcal{O}_1$ iff dim (Hom $(\mathcal{O}_1, \mathcal{O}_2)$) = 1;

► Let $\wedge_i, \forall_i : \mathcal{Q}(\mathbb{K}Mag) \times \mathcal{Q}(\mathbb{K}Mag) \rightarrow \mathcal{Q}(\mathbb{K}Mag)$ defined by $\triangleright \ \mathscr{O}_1 \wedge_i \mathscr{O}_2 = \mathbb{K}Mag/_{l_1+l_2};$

 $\triangleright \ \mathscr{O}_1 \vee_i \mathscr{O}_2 = \mathbb{K} \mathsf{Mag}/_{I_1 \cap I_2}.$

- Let $\mathcal{O}_1 = \mathbb{K}\mathbf{Mag}/_{l_1}$ and $\mathcal{O}_2 = \mathbb{K}\mathbf{Mag}/_{l_2}$;
 - ▷ we have dim $(Hom(\mathscr{O}_1, \mathscr{O}_2)) \leq 1;$
 - ▷ dim (Hom $(\mathcal{O}_1, \mathcal{O}_2)) = 1$ iff $I_1 \subseteq I_2$;
 - $\triangleright \ \dim \left(\mathsf{Hom} \left(\mathscr{O}_1, \mathscr{O}_2 \right) \right) = 1 \text{ iff } \exists \varphi : \mathscr{O}_1 \to \mathscr{O}_2 \text{ surjective.}$

► Let $\leq_i \subseteq \mathcal{Q}(\mathbb{K}Mag) \times \mathcal{Q}(\mathbb{K}Mag)$ defined by ▷ $\mathcal{O}_2 \prec_i \mathcal{O}_1$ iff dim (Hom $(\mathcal{O}_1, \mathcal{O}_2)) = 1$;

► Let $\wedge_i, \forall_i : \mathcal{Q}(\mathbb{K}Mag) \times \mathcal{Q}(\mathbb{K}Mag) \rightarrow \mathcal{Q}(\mathbb{K}Mag)$ defined by ▷ $\mathcal{O}_1 \wedge_i \mathcal{O}_2 = \mathbb{K}Mag/_{l_1+l_2};$ ▷ $\mathcal{O}_1 \vee_i \mathcal{O}_2 = \mathbb{K}Mag/_{l_1 \cap l_2}.$

Theorem [C.-Cordero-Giraudo, 2018]. Consider the notations introduced above.

i. The tuple $(\mathcal{Q}(\mathbb{K}Mag), \preceq_i, \wedge_i, \vee_i)$ is a lattice.

- Let $\mathcal{O}_1 = \mathbb{K}\mathbf{Mag}/_{l_1}$ and $\mathcal{O}_2 = \mathbb{K}\mathbf{Mag}/_{l_2}$;
 - ▷ we have dim $(Hom(\mathscr{O}_1, \mathscr{O}_2)) \leq 1;$
 - $\triangleright \ \dim (\operatorname{Hom} (\mathscr{O}_1, \mathscr{O}_2)) = 1 \text{ iff } I_1 \subseteq I_2;$
 - $\triangleright \ \dim \left(\mathsf{Hom}\left(\mathscr{O}_1, \mathscr{O}_2\right)\right) = 1 \text{ iff } \exists \varphi : \mathscr{O}_1 \to \mathscr{O}_2 \text{ surjective.}$

► Let $\leq_i \subseteq \mathcal{Q}(\mathbb{K}Mag) \times \mathcal{Q}(\mathbb{K}Mag)$ defined by ▷ $\mathcal{O}_2 \prec_i \mathcal{O}_1$ iff dim (Hom $(\mathcal{O}_1, \mathcal{O}_2)) = 1$;

► Let $\wedge_i, \forall_i : \mathcal{Q}(\mathbb{K}Mag) \times \mathcal{Q}(\mathbb{K}Mag) \rightarrow \mathcal{Q}(\mathbb{K}Mag)$ defined by ▷ $\mathcal{O}_1 \wedge_i \mathcal{O}_2 = \mathbb{K}Mag/_{l_1+l_2};$ ▷ $\mathcal{O}_1 \vee_i \mathcal{O}_2 = \mathbb{K}Mag/_{l_1 \cap l_2}.$

Theorem [C.-Cordero-Giraudo, 2018]. Consider the notations introduced above.

- i. The tuple $\left(\mathcal{Q}\left(\mathbb{K}\text{Mag}\right), \preceq_i, \wedge_i, \lor_i\right)$ is a lattice.
- ii. We have the following Grassmann formula analog:

$$\mathcal{H}_{\mathscr{O}_1\vee_{\mathrm{i}}\mathscr{O}_2}(t)+\mathcal{H}_{\mathscr{O}_1\wedge_{\mathrm{i}}\mathscr{O}_2}(t)=\mathcal{H}_{\mathscr{O}_1}(t)+\mathcal{H}_{\mathscr{O}_2}(t).$$
\sim - \sim and \sim + \sim

$$\sim$$
 - \sim and \sim + \sim

• Let $2NiI := As \wedge_i AAs$, that is $I_{2NiI} = I_{As} + I_{AAs}$;

$$\sim$$
 - \sim and \sim + \sim

• Let $2NiI := As \wedge_i AAs$, that is $I_{2NiI} = I_{As} + I_{AAs}$;

▷ we have

$$\sim$$
 - \sim and \sim + \sim

• Let $2Nil := As \wedge_i AAs$, that is $I_{2Nil} = I_{As} + I_{AAs}$;

▷ we have

$$\sim$$
 - \sim and \sim + \sim

• Let $2NiI := As \wedge_i AAs$, that is $I_{2NiI} = I_{As} + I_{AAs}$;

▷ we have

▷ so that I_{2Nil} is generated by

$$\sim$$
 - \sim and \sim + \sim

• Let $2NiI := As \wedge_i AAs$, that is $I_{2NiI} = I_{As} + I_{AAs}$;

▷ we have

▷ so that I_{2Nil} is generated by

$$\sim$$
 - \sim and \sim + \sim

• Let $2NiI := As \wedge_i AAs$, that is $I_{2NiI} = I_{As} + I_{AAs}$;

▷ we have

▷ so that I_{2Nil} is generated by

$$\sim$$
 - \sim and \sim + \sim

• Let $2NiI := As \wedge_i AAs$, that is $I_{2NiI} = I_{As} + I_{AAs}$;

▷ we have

▷ so that I_{2Nil} is generated by

• Letting $I_{\mathbb{K}\mathbf{R}\mathbf{C}^{(3)}} := \{\mathbf{x} - \mathbf{y} \mid \mathbf{x} \text{ and } \mathbf{y} \text{ are trees of arity 4}\}$, we have $\mathbb{K}\mathbf{R}\mathbf{C}^{(3)} = \mathbf{A}\mathbf{s} \vee_i \mathbf{A}\mathbf{A}\mathbf{s}$;

$$\sim$$
 - \sim and \sim + \sim

• Let $2NiI := As \wedge_i AAs$, that is $I_{2NiI} = I_{As} + I_{AAs}$;

▷ we have

▷ so that I_{2Nil} is generated by

• Letting $I_{\mathbb{K}\mathbf{RC}^{(3)}} := \{\mathbf{x} - \mathbf{y} \mid \mathbf{x} \text{ and } \mathbf{y} \text{ are trees of arity 4}\}$, we have $\mathbb{K}\mathbf{RC}^{(3)} = \mathbf{As} \vee_i \mathbf{AAs}$;

 \triangleright one shows that $I_{\mathbb{K}RC^{(3)}} \subseteq I_{As} \cap I_{AAs}$, so that $\exists \pi : \mathbb{K}RC^{(3)} \rightarrow As \lor_i AAs$ surjective;

$$\sim$$
 - \sim and \sim + \sim

• Let $2NiI := As \wedge_i AAs$, that is $I_{2NiI} = I_{As} + I_{AAs}$;

▷ we have

▷ so that I_{2Nil} is generated by

• Letting $I_{\mathbb{K}\mathbf{R}\mathbf{C}^{(3)}} := \{\mathbf{x} - \mathbf{y} \mid \mathbf{x} \text{ and } \mathbf{y} \text{ are trees of arity 4}\}$, we have $\mathbb{K}\mathbf{R}\mathbf{C}^{(3)} = \mathbf{A}\mathbf{s} \vee_i \mathbf{A}\mathbf{A}\mathbf{s}$;

▷ one shows that $I_{\mathbb{K}RC^{(3)}} \subseteq I_{As} \cap I_{AAs}$, so that $\exists \pi : \mathbb{K}RC^{(3)} \to As \lor_i AAs$ surjective;

> using the Grassmann formula, one shows that π is an isomorphism.

Plan

III. Comb associative operads

 \triangleright $I_{CAs(\gamma)}$: the ideal generated by

 γ nodes γ nodes.

 \triangleright $I_{CAs(\gamma)}$: the ideal generated by

 ${\scriptstyle \vartriangleright} \ \mathbf{CAs}^{(\gamma)} := \mathbf{Mag}/_{\mathbf{I}_{\mathbf{CAs}^{(\gamma)}}} \text{ is called the } \gamma\text{-}\mathbf{comb} \text{ associative operad.}$

 \triangleright $I_{CAs(\gamma)}$: the ideal generated by

 ${\scriptstyle \vartriangleright} \ \, \mathbf{CAs}^{(\gamma)} := \mathbf{Mag}/_{{\it I}_{\mathbf{CAs}^{(\gamma)}}} \text{ is called the } \gamma\text{-comb associative operad}.$

- ▶ For instance,
 - ▷ $CAs^{(1)} = \mathbb{K}Mag$, $CAs^{(2)} = As$

▷ $I_{CAs}(\gamma)$: the ideal generated by

 ${\scriptstyle \vartriangleright} \ \, \mathbf{CAs}^{(\gamma)} := \mathbf{Mag}/_{{}_{\mathbf{CAs}^{(\gamma)}}} \text{ is called the } \gamma\text{-comb associative operad}.$

▶ For instance,

▷ $CAs^{(1)} = \mathbb{K}Mag$, $CAs^{(2)} = As$, $CAs^{(3)}$ is submitted to the relations generated by

▷ $I_{CAs}(\gamma)$: the ideal generated by

 ${\scriptstyle \vartriangleright} \ \, \mathbf{CAs}^{(\gamma)} := \mathbf{Mag}/_{\mathbf{I}_{\mathbf{CAs}^{(\gamma)}}} \text{ is called the } \gamma\text{-comb associative operad}.$

For instance,

 \triangleright CAs⁽¹⁾ = KMag, CAs⁽²⁾ = As, CAs⁽³⁾ is submitted to the relations generated by

Objective of the section: show that

$$\mathsf{CAs} := \left\{\mathsf{CAs}^{(\gamma)} \mid \gamma \geq 1
ight\}$$

admits a lattice structure.

C.Chenavier, C.Cordero, S.Giraudo

- \leq_d : the restriction of \leq_i to **CAs**;
 - \triangleright $\mathsf{CAs}^{(\gamma)} \preceq_{\mathrm{d}} \mathsf{CAs}^{(\beta)}$ is equivalent to

- \leq_{d} : the restriction of \leq_{i} to **CAs**;
 - $\triangleright \ \mathbf{CAs}^{(\gamma)} \preceq_{\mathrm{d}} \mathbf{CAs}^{(\beta)}$ is equivalent to

▷ using an orientation of $\equiv_{I_{CAs}(\gamma)}$:

- ▶ \leq_d : the restriction of \leq_i to **CAs**;
 - \triangleright $CAs^{(\gamma)} \preceq_{d} CAs^{(\beta)}$ is equivalent to

 $\triangleright \ \text{ using an orientation of } \equiv_{\textit{I}_{\mathsf{CAs}}(\gamma)}: \ \mathbf{CAs}^{(\gamma)} \preceq_{\mathrm{d}} \mathbf{CAs}^{(\beta)} \ \text{iff} \ \overline{\gamma} \mid \overline{\beta} \ (\text{with } \overline{\alpha} := \alpha - 1).$

▷ $CAs^{(\gamma)} \preceq_{d} CAs^{(\beta)}$ is equivalent to

 $\triangleright \ \text{ using an orientation of } \equiv_{\textit{I}_{\mathsf{CAs}}(\gamma)}: \ \mathbf{CAs}^{(\gamma)} \preceq_{\mathrm{d}} \mathbf{CAs}^{(\beta)} \ \text{iff} \ \overline{\gamma} \mid \overline{\beta} \ (\text{with } \overline{\alpha} := \alpha - 1).$

► Let \wedge_{d}, \vee_{d} : CAs × CAs \rightarrow CAs defined by ▷ CAs^(γ) \wedge_{d} CAs^(β) := CAs^{($gcd(\overline{\gamma}, \overline{\beta}) + 1$}; ▷ CAs^(γ) \vee_{d} CAs^(β) := CAs^{($lcm(\overline{\gamma}, \overline{\beta}) + 1$}.

- \leq_d : the restriction of \leq_i to CAs;
 - ▷ $CAs^{(\gamma)} \preceq_{d} CAs^{(\beta)}$ is equivalent to

 $\triangleright \ \text{ using an orientation of } \equiv_{\mathsf{I}_{\mathsf{CAs}}(\gamma)}: \mathsf{CAs}^{(\gamma)} \preceq_{\mathrm{d}} \mathsf{CAs}^{(\beta)} \text{ iff } \overline{\gamma} \mid \overline{\beta} \text{ (with } \overline{\alpha} := \alpha - 1\text{)}.$

► Let $\wedge_{d}, \vee_{d} : \mathbf{CAs} \times \mathbf{CAs} \to \mathbf{CAs}$ defined by ▷ $\mathbf{CAs}^{(\gamma)} \wedge_{d} \mathbf{CAs}^{(\beta)} := \mathbf{CAs}^{\left(\gcd\left(\overline{\gamma}, \overline{\beta}\right) + 1\right)};$ ▷ $\mathbf{CAs}^{(\gamma)} \vee_{d} \mathbf{CAs}^{(\beta)} := \mathbf{CAs}^{\left(\operatorname{lcm}\left(\overline{\gamma}, \overline{\beta}\right) + 1\right)}.$

Theorem [C.-Cordero-Giraudo, 2018]. The tuple (CAs, \leq_d , \wedge_d , \vee_d) is a lattice.

- \leq_d : the restriction of \leq_i to CAs;
 - ▷ $CAs^{(\gamma)} \preceq_{d} CAs^{(\beta)}$ is equivalent to

$$\beta \text{ nodes} = I_{CAs}(\gamma) \int \beta \text{ nodes}$$

 $\triangleright \ \text{ using an orientation of } \equiv_{\mathsf{I}_{\mathsf{CAs}}(\gamma)}: \ \mathsf{CAs}^{(\gamma)} \preceq_{\mathrm{d}} \mathsf{CAs}^{(\beta)} \text{ iff } \overline{\gamma} \mid \overline{\beta} \text{ (with } \overline{\alpha} := \alpha - 1\text{)}.$

► Let \wedge_{d}, \vee_{d} : CAs × CAs \rightarrow CAs defined by ▷ CAs^(γ) \wedge_{d} CAs^(β) := CAs^{($\gcd(\overline{\gamma}, \overline{\beta}) + 1$); ▷ CAs^(γ) \vee_{d} CAs^(β) := CAs^{($lcm(\overline{\gamma}, \overline{\beta}) + 1$).}}

Theorem [C.-Cordero-Giraudo, 2018]. The tuple (CAs, \leq_d , \wedge_d , \vee_d) is a lattice.

Remark. (CAs, \leq_d , \wedge_d , \vee_d) does not embed into ($\mathcal{Q}(\mathbb{K}Mag), \leq_i, \wedge_i, \vee_i$) as a sublattice:

$$\checkmark \neq_{I_{\mathsf{CAs}^{(3)} \land_1 \mathsf{CAs}^{(4)}} \checkmark$$

- \leq_d : the restriction of \leq_i to **CAs**;
 - ▷ $CAs^{(\gamma)} \preceq_{d} CAs^{(\beta)}$ is equivalent to

$$\beta \text{ nodes} = I_{CAS}(\gamma)$$
 $\beta \text{ nodes}$

 $\triangleright \ \text{ using an orientation of } \equiv_{\mathsf{I}_{\mathsf{CAs}}(\gamma)}: \mathsf{CAs}^{(\gamma)} \preceq_{\mathrm{d}} \mathsf{CAs}^{(\beta)} \text{ iff } \overline{\gamma} \mid \overline{\beta} \text{ (with } \overline{\alpha} := \alpha - 1\text{)}.$

► Let \wedge_{d}, \vee_{d} : CAs × CAs \rightarrow CAs defined by ▷ CAs^(γ) \wedge_{d} CAs^(β) := CAs^{($\gcd(\overline{\gamma}, \overline{\beta}) + 1$}; ▷ CAs^(γ) \vee_{d} CAs^(β) := CAs^{($lcm(\overline{\gamma}, \overline{\beta}) + 1$}.

Theorem [C.-Cordero-Giraudo, 2018]. The tuple (CAs, \leq_d , \wedge_d , \vee_d) is a lattice.

Remark. (CAs, \leq_d , \wedge_d , \vee_d) does not embed into ($\mathcal{Q}(\mathbb{K}Mag), \leq_i, \wedge_i, \vee_i$) as a sublattice:

$$\bigvee \equiv_{I_{\mathsf{CAs}^{(3)} \wedge_{\mathrm{d}} \mathsf{CAs}^{(4)}}} \bigvee$$

since $CAs^{(3)} \wedge_d CAs^{(4)} = CAs^{(gcd(2,3)+1)} = CAs^{(2)} = As.$

Buchberger/Knuth-Bendix's completion procedure applied to CAs⁽³⁾ provides:
 new rewrite rules for arities 5, ..., 8;

- Buchberger/Knuth-Bendix's completion procedure applied to CAs⁽³⁾ provides:
 new rewrite rules for arities 5, ..., 8;
 - ▷ no new rewrite rule for arities $9, \cdots, 14!$

Buchberger/Knuth-Bendix's completion procedure applied to CAs⁽³⁾ provides:
 new rewrite rules for arities 5, · · · , 8;

▷ no new rewrite rule for arities $9, \cdots, 14!$

Theorem [C.-Cordero-Giraudo, 2018]. The operad **CAs**⁽³⁾ is presented by a finite Gröbner basis.

Buchberger/Knuth-Bendix's completion procedure applied to CAs⁽³⁾ provides:
 new rewrite rules for arities 5, · · · , 8;

▷ no new rewrite rule for arities $9, \cdots, 14!$

Theorem [C.-Cordero-Giraudo, 2018]. The operad $CAs^{(3)}$ is presented by a finite Gröbner basis. Moreover, we have

$$\mathcal{H}_{\mathsf{CAs}^{(3)}} = \sum_{n \leq 10} \alpha_n t^n + \sum_{n \geq 11} (n+3)t^n,$$

where,

value of n	2	3	4	5	6	7	8	9	10
value of α_n	1	2	4	8	14	20	19	16	14

Buchberger/Knuth-Bendix's completion procedure applied to CAs⁽³⁾ provides:
 new rewrite rules for arities 5, · · · , 8;

▷ no new rewrite rule for arities $9, \cdots, 14!$

Theorem [C.-Cordero-Giraudo, 2018]. The operad $CAs^{(3)}$ is presented by a finite Gröbner basis. Moreover, we have

$$\mathcal{H}_{\mathsf{CAs}^{(3)}} = \sum_{n \leq 10} \alpha_n t^n + \sum_{n \geq 11} (n+3)t^n,$$

where,

value of n	2	3	4	5	6	7	8	9	10
value of α_n	1	2	4	8	14	20	19	16	14

• We did not find finite Gröbner bases for higher $CAs^{(\gamma)}$'s

Buchberger/Knuth-Bendix's completion procedure applied to CAs⁽³⁾ provides:
 new rewrite rules for arities 5, · · · , 8;

▷ no new rewrite rule for arities $9, \cdots, 14!$

Theorem [C.-Cordero-Giraudo, 2018]. The operad $CAs^{(3)}$ is presented by a finite Gröbner basis. Moreover, we have

$$\mathcal{H}_{\mathsf{CAs}^{(3)}} = \sum_{n \leq 10} \alpha_n t^n + \sum_{n \geq 11} (n+3)t^n,$$

where,

value of n	2	3	4	5	6	7	8	9	10
value of α_n	1	2	4	8	14	20	19	16	14

• We did not find finite Gröbner bases for higher $CAs^{(\gamma)}$'s:

▷ benchmarks appear in Section 3.3.2 of the article;

Buchberger/Knuth-Bendix's completion procedure applied to CAs⁽³⁾ provides:
 new rewrite rules for arities 5, · · · , 8;

▷ no new rewrite rule for arities $9, \cdots, 14!$

Theorem [C.-Cordero-Giraudo, 2018]. The operad $CAs^{(3)}$ is presented by a finite Gröbner basis. Moreover, we have

$$\mathcal{H}_{\mathsf{CAs}^{(3)}} = \sum_{n \leq 10} \alpha_n t^n + \sum_{n \geq 11} (n+3)t^n,$$

where,

value of n	2	3	4	5	6	7	8	9	10
value of α_n	1	2	4	8	14	20	19	16	14

• We did not find finite Gröbner bases for higher $CAs^{(\gamma)}$'s:

- ▷ benchmarks appear in Section 3.3.2 of the article;
- ▷ **CAs**⁽⁴⁾: new rewrite rules still appear at arity 42

Buchberger/Knuth-Bendix's completion procedure applied to CAs⁽³⁾ provides:
 new rewrite rules for arities 5, ..., 8;

▷ no new rewrite rule for arities $9, \cdots, 14!$

Theorem [C.-Cordero-Giraudo, 2018]. The operad $CAs^{(3)}$ is presented by a finite Gröbner basis. Moreover, we have

$$\mathcal{H}_{\mathsf{CAs}^{(3)}} = \sum_{n \leq 10} \alpha_n t^n + \sum_{n \geq 11} (n+3)t^n,$$

where,

value of n	2	3	4	5	6	7	8	9	10
value of α_n	1	2	4	8	14	20	19	16	14

• We did not find finite Gröbner bases for higher $CAs^{(\gamma)}$'s:

- ▶ benchmarks appear in Section 3.3.2 of the article;
- ▷ **CAs**⁽⁴⁾: new rewrite rules still appear at arity 42; at least 3148 new rewrite rules!

Plan

IV. Conclusion and perspectives

► Reference of the article: arXiv:1809.05083.

Reference of the article: arXiv:1809.05083.

- During the talk:
 - \triangleright we equipped $\mathcal{Q}(\mathbb{K}Mag)$ with a lattice structure and provide a Grassmann formula analog;
 - ▷ we defined the subposet CAs and equipped it with lattice operations;
 - \triangleright we presented an explicit description of $\mathcal{H}_{CAs^{(3)}}$ using a finite Gröbner basis.

- Reference of the article: arXiv:1809.05083.
- During the talk:
 - \triangleright we equipped $\mathcal{Q}(\mathbb{K}Mag)$ with a lattice structure and provide a Grassmann formula analog;
 - ▷ we defined the subposet CAs and equipped it with lattice operations;
 - ▷ we presented an explicit description of $\mathcal{H}_{CAs^{(3)}}$ using a finite Gröbner basis.
- In the article, we also:
 - ▷ provide benchmarks on completion and Hilbert series of higher CAs operads;
 - compute Hilbert series and combinatorial realizations for most of set-theoretic cubical magmatic quotients.
- Reference of the article: arXiv:1809.05083.
- During the talk:
 - \triangleright we equipped $\mathcal{Q}(\mathbb{K}Mag)$ with a lattice structure and provide a Grassmann formula analog;
 - ▷ we defined the subposet CAs and equipped it with lattice operations;
 - \triangleright we presented an explicit description of $\mathcal{H}_{CAs^{(3)}}$ using a finite Gröbner basis.
- In the article, we also:
 - provide benchmarks on completion and Hilbert series of higher CAs operads;
 - compute Hilbert series and combinatorial realizations for most of set-theoretic cubical magmatic quotients.
- Our perspectives:
 - compute Gröbner bases for higher CAs operads (including the use of new generators);
 - ▷ use the lattice structures for computing Gröbner bases of magmatic quotients;
 - study the links between quotients of Tamari lattices and the combinatorial/algebraic properties of the associated operad.

- Reference of the article: arXiv:1809.05083.
- During the talk:
 - \triangleright we equipped $\mathcal{Q}(\mathbb{K}Mag)$ with a lattice structure and provide a Grassmann formula analog;
 - ▷ we defined the subposet CAs and equipped it with lattice operations;
 - \triangleright we presented an explicit description of $\mathcal{H}_{CAs^{(3)}}$ using a finite Gröbner basis.
- In the article, we also:
 - ▷ provide benchmarks on completion and Hilbert series of higher CAs operads;
 - compute Hilbert series and combinatorial realizations for most of set-theoretic cubical magmatic quotients.
- Our perspectives:
 - ▷ compute Gröbner bases for higher CAs operads (including the use of new generators);
 - ▷ use the lattice structures for computing Gröbner bases of magmatic quotients;
 - study the links between quotients of Tamari lattices and the combinatorial/algebraic properties of the associated operad.

THANK YOU FOR LISTENING!