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Motivations Motivating example: an oscillating Hilbert series

I Our motivating example: the operad CAs(3);
. definition given in Section III.

I By computer explorations, the first terms of the Hilbert series are:

degrees 2 3 4 5 6 7 8 9 10 11 12 13 14
coefficients 1 2 4 8 14 20 19 16 14 14 15 16 17

I Two questions:
. What does explain this oscillation?

. Is this possible to have a complete description of this series?

I Hilbert series may be computed using Gröbner bases, that are terminating and confluent
rewrite systems

;
. counting normal forms.

I Is the operad CAs(3) presented by a finite Gröbner basis?

. Yes: using the Buchberger/Knuth-Bendix’s completion procedure.

C.Chenavier, C.Cordero, S.Giraudo Quotients of the magmatic operad December 20, 2018 4 / 19



Motivations Motivating example: an oscillating Hilbert series

I Our motivating example: the operad CAs(3);
. definition given in Section III.

I By computer explorations, the first terms of the Hilbert series are:

degrees 2 3 4 5 6 7 8 9 10 11 12 13 14
coefficients 1 2 4 8 14 20 19 16 14 14 15 16 17

I Two questions:
. What does explain this oscillation?

. Is this possible to have a complete description of this series?

I Hilbert series may be computed using Gröbner bases, that are terminating and confluent
rewrite systems

;
. counting normal forms.

I Is the operad CAs(3) presented by a finite Gröbner basis?

. Yes: using the Buchberger/Knuth-Bendix’s completion procedure.

C.Chenavier, C.Cordero, S.Giraudo Quotients of the magmatic operad December 20, 2018 4 / 19



Motivations Motivating example: an oscillating Hilbert series

I Our motivating example: the operad CAs(3);
. definition given in Section III.

I By computer explorations, the first terms of the Hilbert series are:

degrees 2 3 4 5 6 7 8 9 10 11 12 13 14
coefficients 1 2 4 8 14 20 19 16 14 14 15 16 17

I Two questions:
. What does explain this oscillation?

. Is this possible to have a complete description of this series?

I Hilbert series may be computed using Gröbner bases, that are terminating and confluent
rewrite systems

;
. counting normal forms.

I Is the operad CAs(3) presented by a finite Gröbner basis?

. Yes: using the Buchberger/Knuth-Bendix’s completion procedure.

C.Chenavier, C.Cordero, S.Giraudo Quotients of the magmatic operad December 20, 2018 4 / 19



Motivations Motivating example: an oscillating Hilbert series

I Our motivating example: the operad CAs(3);
. definition given in Section III.

I By computer explorations, the first terms of the Hilbert series are:

degrees 2 3 4 5 6 7 8 9 10 11 12 13 14
coefficients 1 2 4 8 14 20 19 16 14 14 15 16 17

I Two questions:
. What does explain this oscillation?

. Is this possible to have a complete description of this series?

I Hilbert series may be computed using Gröbner bases, that are terminating and confluent
rewrite systems

;
. counting normal forms.

I Is the operad CAs(3) presented by a finite Gröbner basis?

. Yes: using the Buchberger/Knuth-Bendix’s completion procedure.

C.Chenavier, C.Cordero, S.Giraudo Quotients of the magmatic operad December 20, 2018 4 / 19



Motivations Motivating example: an oscillating Hilbert series

I Our motivating example: the operad CAs(3);
. definition given in Section III.

I By computer explorations, the first terms of the Hilbert series are:

degrees 2 3 4 5 6 7 8 9 10 11 12 13 14
coefficients 1 2 4 8 14 20 19 16 14 14 15 16 17

I Two questions:
. What does explain this oscillation?

. Is this possible to have a complete description of this series?

I Hilbert series may be computed using Gröbner bases, that are terminating and confluent
rewrite systems;
. counting normal forms.

I Is the operad CAs(3) presented by a finite Gröbner basis?

. Yes: using the Buchberger/Knuth-Bendix’s completion procedure.

C.Chenavier, C.Cordero, S.Giraudo Quotients of the magmatic operad December 20, 2018 4 / 19



Motivations Motivating example: an oscillating Hilbert series

I Our motivating example: the operad CAs(3);
. definition given in Section III.

I By computer explorations, the first terms of the Hilbert series are:

degrees 2 3 4 5 6 7 8 9 10 11 12 13 14
coefficients 1 2 4 8 14 20 19 16 14 14 15 16 17

I Two questions:
. What does explain this oscillation?

. Is this possible to have a complete description of this series?

I Hilbert series may be computed using Gröbner bases, that are terminating and confluent
rewrite systems;
. counting normal forms.

I Is the operad CAs(3) presented by a finite Gröbner basis?

. Yes: using the Buchberger/Knuth-Bendix’s completion procedure.

C.Chenavier, C.Cordero, S.Giraudo Quotients of the magmatic operad December 20, 2018 4 / 19



Motivations Motivating example: an oscillating Hilbert series

I Our motivating example: the operad CAs(3);
. definition given in Section III.

I By computer explorations, the first terms of the Hilbert series are:

degrees 2 3 4 5 6 7 8 9 10 11 12 13 14
coefficients 1 2 4 8 14 20 19 16 14 14 15 16 17

I Two questions:
. What does explain this oscillation?

. Is this possible to have a complete description of this series?

I Hilbert series may be computed using Gröbner bases, that are terminating and confluent
rewrite systems;
. counting normal forms.

I Is the operad CAs(3) presented by a finite Gröbner basis?
. Yes: using the Buchberger/Knuth-Bendix’s completion procedure.

C.Chenavier, C.Cordero, S.Giraudo Quotients of the magmatic operad December 20, 2018 4 / 19



Motivations Nonsymmetric operads

I A nonsymmetric linear operad is a positively graded (K-)vector space

O =
⊕
n∈N

O(n),

together with
. a distinguished element 1 ∈ O(1);

. partial compositions ◦i : O(n)⊗ O(m)→ O(n + m − 1), ∀1 ≤ i ≤ n;

satisfying axioms (next slide).

I Example: the operad EndV of (multi-)linear mappings on the vector space V ;

. EndV (n) := Hom
(

V⊗n,V
)

3 x : (v1, · · · , vn) 7→ x (v1, · · · , vn) ;

. EndV (1) 3 1 = idV : v 7→ v ;

. ∀x ∈ EndV (n), y ∈ EndV (m), 1 ≤ i ≤ n,

x ◦i y : (v1, · · · , vn+m−1) 7→ x (v1, · · · , vi−1, y(vi , · · · , vi+m−1), vi+m, · · · , vm+n−1) .

I How to construct operads?

. Using presentations by generators and relations 〈X | R〉.
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Motivations Free operads

I The free operad F (X ) over a graded set X is constructed as follows:

. x ∈ X (n) is represented by a labelled node with n leaves:

x
· · ·

. F (X ) := {linear combinations of syntactic trees}

, 1: the thread;

x
· · ·y

· · · z
· · ·

x
· · ·y

· · ·
z
· · ·

. x ◦i y: obtained by grafting the root of y on the i-th leaf of x.

I The compositions satisfy axioms:

. neutrality of 1 for each ◦i : 1 ◦1 x = x = x ◦i 1;

. associativity of sequential compositions: x ◦i (y ◦j z) = (x ◦i y) ◦i+j−1 z;

. commutativity of parallel compositions: (x ◦i y) ◦j+m−1 z = (x ◦j z) ◦i y, where i < j and m
is the arity of y.
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Motivations Operadic ideals/congruences

I Given R ⊆ F (X ), the operad presented by 〈X | R〉 is constructed as follows:

. ≡R: the operadic congruence generated by R, that is x ≡R 0 for every x ∈ R;

. I (R) := {x ∈ F (X ) | x ≡R 0}: the operadic ideal generated by R;

. O〈X | R〉 := F (X ) /I (R).

I 1st example: the unital associative operad is presented by

. one 0-ary generator ( the unit)

and one binary generator ( the multiplication);

•

. the neutrality relations

and the associativity relation;

• ≡ •≡

≡

I 2nd example: the differential associative operad is presented by

. one 0-ary generator, one binary generator and one unary generator ( the differential);

d

. the neutrality and associativity relations and the Leibniz’s identity;

d ≡ d + d
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Motivations Gröbner bases for operads

I Gröbner bases for operads:
. convergent (i.e. terminating and confluent) rewrite systems on F (X );
. a confluence criterion: the Diamond’s Lemma [Dotsenko-Khoroshkin 2010].

I Case of the untial associative operad:
. a Gröbner basis is induced by the rewrite rules:

• •

. indeed, all critical pairs are confluent; for instance

. some combinatorial consequences: right comb trees form a linear bases, the coefficients of
the Hilbert series are equal to 1;

. a homological consequence: the nonunital associative operad is a Koszul operad.
I Gröbner bases are computed by the Buchberger/Knuth-Bendix’s completion procedure.
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Motivations Objectives of the talk

I We study magmatic quotients

;

. the operad CAs(3) belongs to a set of operads CAs :=
{
CAs(γ) | γ ≥ 1

}
;

. CAs is included in the set of magmatic quotients.

I We introduce a lattice structure on magmatic quotients:

. we define this structure in terms of morphisms between magmatic quotients;

. we present a Grassmann formula analog for this lattice.

I We study the induced poset on CAs:

. we present new lattice operations on this poset;

. we study the existence of finite Gröbner bases for CAs(γ) operads;

. we deduce the complete expression of the Hilbert series of CAs(3).
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Lattice of magmatic quotients

Plan

II. Lattice of magmatic quotients
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Lattice of magmatic quotients The category of magmatic quotients

I K : a fixed field s.t. char (K) 6= 2.

I The magmatic operad KMag is the free operad over one binary generator.

I A magmatic quotient is a quotient operad O = KMag/I .

. Alternatively: it is an operad over one binary generator [?]I .

. Q (KMag) := {magmatic quotients}.

Lemma. Given O1 = KMag/I1 and O2 = KMagI2 , we have dim (Hom (O1,O2)) ≤ 1.

Sketch of proof. Let ϕ ∈ Hom (O1,O2),

. taking arities into account: ∃λ ∈ K, s.t. ϕ ([?]I1) = λ[?]I2 ;

. by the universal property of the quotient: if λ 6= 0, then I1 ⊆ I2;

. if I1 ⊆ I2, then ∀µ ∈ K \ {0}, ∃ψ ∈ Hom (O1,O2) s.t. ψ ([?]I1) = µ[?]I2 .

Remark. A nonzero operad morphism between magmatic quotients is surjective.
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. Q (KMag) := {magmatic quotients}.

Lemma. Given O1 = KMag/I1 and O2 = KMagI2 , we have dim (Hom (O1,O2)) ≤ 1.

Sketch of proof. Let ϕ ∈ Hom (O1,O2),

. taking arities into account: ∃λ ∈ K, s.t. ϕ ([?]I1) = λ[?]I2 ;

. by the universal property of the quotient: if λ 6= 0, then I1 ⊆ I2;

. if I1 ⊆ I2, then ∀µ ∈ K \ {0}, ∃ψ ∈ Hom (O1,O2) s.t. ψ ([?]I1) = µ[?]I2 .

Remark. A nonzero operad morphism between magmatic quotients is surjective.
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Lattice of magmatic quotients Lattice structure of magmatic quotients

I Let O1 = KMag/I1 and O2 = KMag/I2 ;
. we have dim (Hom (O1,O2)) ≤ 1;

. dim (Hom (O1,O2)) = 1 iff I1 ⊆ I2;

. dim (Hom (O1,O2)) = 1 iff ∃ϕ : O1 → O2 surjective.

I Let �i ( Q (KMag)×Q (KMag) defined by
. O2 �i O1 iff dim (Hom (O1,O2)) = 1;

I Let ∧i,∨i : Q (KMag)×Q (KMag)→ Q (KMag) defined by
. O1 ∧i O2 = KMag/I1+I2 ;

. O1 ∨i O2 = KMag/I1∩I2 .

Theorem [C.-Cordero-Giraudo, 2018]. Consider the notations introduced above.

i. The tuple (Q (KMag) ,�i,∧i,∨i) is a lattice.

ii. We have the following Grassmann formula analog:

HO1∨iO2(t) +HO1∧iO2(t) = HO1(t) +HO2(t).
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Lattice of magmatic quotients Example

I Let As := KMag/IAs and AAs := KMag/IAAs , where IAs and IAAs are generated by

− +and

I Let 2Nil := As ∧i AAs, that is I2Nil = IAs + IAAs;

. we have

≡I2Nil

≡I2Nil −

. so that I2Nil is generated by

and

I Letting IKRC(3) := {x− y | x and y are trees of arity 4}, we have KRC(3) = As ∨i AAs;

. one shows that IKRC(3) ⊆ IAs ∩ IAAs, so that ∃π : KRC(3) → As ∨i AAs surjective;

. using the Grassmann formula, one shows that π is an isomorphism.
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Comb associative operads

Plan

III. Comb associative operads
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Comb associative operads Definition of CAs operads

I γ ≥ 1: a positive integer;

. ICAs(γ) : the ideal generated by

γ nodes γ nodes
•
•
• •

•
•

−

. CAs(γ) := Mag/I
CAs(γ) is called the γ-comb associative operad.

I For instance,

. CAs(1) = KMag, CAs(2) = As

, CAs(3) is submitted to the relations generated by

−

I Objective of the section: show that

CAs :=
{
CAs(γ) | γ ≥ 1

}
admits a lattice structure.
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Comb associative operads The lattice of CAs operads

I �d: the restriction of �i to CAs;

. CAs(γ) �d CAs(β) is equivalent to

β nodes β nodes
•
•
• •

•
•

≡I
CAs(γ)

. using an orientation of ≡I
CAs(γ) :

CAs(γ) �d CAs(β) iff γ | β (with α := α− 1).

I Let ∧d,∨d : CAs× CAs→ CAs defined by

. CAs(γ) ∧d CAs(β) := CAs
(
gcd
(
γ,β
)

+1
)
;

. CAs(γ) ∨d CAs(β) := CAs
(
lcm
(
γ,β
)

+1
)
.

Theorem [C.-Cordero-Giraudo, 2018]. The tuple (CAs,�d,∧d,∨d) is a lattice.

Remark. (CAs,�d,∧d,∨d) does not embed into (Q (KMag) ,�i,∧i,∨i) as a sublattice:

≡I
CAs(3)∧dCAs(4)

since CAs(3) ∧d CAs(4) = CAs(gcd(2,3)+1) = CAs(2) = As.
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Comb associative operads Completion of CAs operads

I The orientation of ≡I
CAs(γ) is not confluent:

I Buchberger/Knuth-Bendix’s completion procedure applied to CAs(3) provides:
. new rewrite rules for arities 5, · · · , 8;

. no new rewrite rule for arities 9, · · · , 14!

Theorem [C.-Cordero-Giraudo, 2018]. The operad CAs(3) is presented by a finite
Gröbner basis.

Moreover, we have

HCAs(3) =
∑
n≤10

αntn +
∑
n≥11

(n + 3)tn,

where,
value of n 2 3 4 5 6 7 8 9 10
value of αn 1 2 4 8 14 20 19 16 14

I We did not find finite Gröbner bases for higher CAs(γ)’s

:
. benchmarks appear in Section 3.3.2 of the article;

. CAs(4): new rewrite rules still appear at arity 42

; at least 3148 new rewrite rules!
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Conclusion and perspectives

I Reference of the article: arXiv:1809.05083.

I During the talk:
. we equipped Q (KMag) with a lattice structure and provide a Grassmann formula analog;

. we defined the subposet CAs and equipped it with lattice operations;

. we presented an explicit description of HCAs(3) using a finite Gröbner basis.

I In the article, we also:
. provide benchmarks on completion and Hilbert series of higher CAs operads;

. compute Hilbert series and combinatorial realizations for most of set-theoretic cubical
magmatic quotients.

I Our perspectives:
. compute Gröbner bases for higher CAs operads (including the use of new generators);

. use the lattice structures for computing Gröbner bases of magmatic quotients;

. study the links between quotients of Tamari lattices and the combinatorial/algebraic
properties of the associated operad.

THANK YOU FOR LISTENING!
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