Quotients of the magmatic operad: lattice structures and convergent rewrite systems

Cyrille Chenavier ${ }^{1}$ Christophe Cordero ${ }^{2}$ Samuele Giraudo ${ }^{2}$
${ }^{1}$ INRIA Lille - Nord Europe, Équipe GAIA
${ }^{2}$ Université Paris-Est Marne-la-Vallée, LIGM

December 20, 2018

Plan

I. Motivations

\triangleright Motivating example: an oscillating Hilbert series
\triangleright Nonsymmetric operads
\triangleright Presentations and Gröbner bases for operads
II. Magmatic quotients
\triangleright The category of magmatic quotients
\triangleright The lattice of magmatic quotients
\triangleright A Grassmann formula analog
III. Comb associative operads
\triangleright Definition of CAs operads
\triangleright The lattice of CAs operads
\triangleright Completion of CAs operads
IV. Conclusion and perspectives

I. Motivations

- Our motivating example: the operad CAs ${ }^{(3)}$;
\triangleright definition given in Section III.
- Our motivating example: the operad CAs ${ }^{(3)}$;
\triangleright definition given in Section III.
- By computer explorations, the first terms of the Hilbert series are:

degrees	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$
coefficients	1	2	4	8	$\mathbf{1 4}$	20	19	$\mathbf{1 6}$	$\mathbf{1 4}$	$\mathbf{1 4}$	15	16	17

- Our motivating example: the operad CAs ${ }^{(3)}$;
\triangleright definition given in Section III.
- By computer explorations, the first terms of the Hilbert series are:

degrees	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$
coefficients	1	2	4	8	14	20	19	16	14	14	15	16	17

- Two questions:
\triangleright What does explain this oscillation?
\triangleright Is this possible to have a complete description of this series?
- Our motivating example: the operad CAs ${ }^{(3)}$;
\triangleright definition given in Section III.
- By computer explorations, the first terms of the Hilbert series are:

degrees	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$
coefficients	1	2	4	8	14	20	19	16	14	14	15	16	17

Two questions:
\triangleright What does explain this oscillation?
\triangleright Is this possible to have a complete description of this series?

- Hilbert series may be computed using Gröbner bases, that are terminating and confluent rewrite systems
- Our motivating example: the operad CAs ${ }^{(3)}$;
\triangleright definition given in Section III.
- By computer explorations, the first terms of the Hilbert series are:

degrees	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$
coefficients	1	2	4	8	14	20	19	16	14	14	15	16	17

- Two questions:
\triangleright What does explain this oscillation?
\triangleright Is this possible to have a complete description of this series?
- Hilbert series may be computed using Gröbner bases, that are terminating and confluent rewrite systems;
\triangleright counting normal forms.
- Our motivating example: the operad CAs ${ }^{(3)}$;
\triangleright definition given in Section III.
- By computer explorations, the first terms of the Hilbert series are:

degrees	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$
coefficients	1	2	4	8	14	20	19	16	14	14	15	16	17

- Two questions:
\triangleright What does explain this oscillation?
\triangleright Is this possible to have a complete description of this series?
- Hilbert series may be computed using Gröbner bases, that are terminating and confluent rewrite systems;
\triangleright counting normal forms.
- Is the operad CAs ${ }^{(3)}$ presented by a finite Gröbner basis?
- Our motivating example: the operad CAs ${ }^{(3)}$;
\triangleright definition given in Section III.
- By computer explorations, the first terms of the Hilbert series are:

degrees	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$
coefficients	1	2	4	8	14	20	19	16	14	14	15	16	17

- Two questions:
\triangleright What does explain this oscillation?
\triangleright Is this possible to have a complete description of this series?
- Hilbert series may be computed using Gröbner bases, that are terminating and confluent rewrite systems;
\triangleright counting normal forms.
- Is the operad CAs ${ }^{(3)}$ presented by a finite Gröbner basis?
\triangleright Yes: using the Buchberger/Knuth-Bendix's completion procedure.
- A nonsymmetric linear operad is a positively graded (\mathbb{K}-)vector space

$$
\mathscr{O}=\bigoplus_{n \in \mathbb{N}} \mathscr{O}(n),
$$

together with
\triangleright a distinguished element $1 \in \mathscr{O}(1)$;
\triangleright partial compositions $\circ_{i}: \mathscr{O}(n) \otimes \mathscr{O}(m) \rightarrow \mathscr{O}(n+m-1), \forall 1 \leq i \leq n ;$ satisfying axioms (next slide).

- A (nonsymmetric linear) operad is a positively graded (K) \mathbb{K})vector space

$$
\mathscr{O}=\bigoplus_{n \in \mathbb{N}} \mathscr{O}(n),
$$

together with
\triangleright a distinguished element $\mathbf{1} \in \mathscr{O}(1)$;
\triangleright partial compositions $\circ_{i}: \mathscr{O}(n) \otimes \mathscr{O}(m) \rightarrow \mathscr{O}(n+m-1), \forall 1 \leq i \leq n ;$ satisfying axioms (next slide).

- A (nonsymmetric linear) operad is a positively graded (K) \mathbb{K}-)vector space

$$
\mathscr{O}=\bigoplus_{n \in \mathbb{N}} \mathscr{O}(n)
$$

together with
\triangleright a distinguished element $1 \in \mathscr{O}(1)$;
\triangleright partial compositions $\circ_{i}: \mathscr{O}(n) \otimes \mathscr{O}(m) \rightarrow \mathscr{O}(n+m-1), \forall 1 \leq i \leq n ;$
satisfying axioms (next slide).

- Example: the operad End ${ }_{V}$ of (multi-)linear mappings on the vector space V;
$\triangleright \operatorname{End}_{V}(n):=\operatorname{Hom}\left(V^{\otimes n}, V\right)$
- A (nonsymmetric linear) operad is a positively graded (K) \mathbb{K}-)vector space

$$
\mathscr{O}=\bigoplus_{n \in \mathbb{N}} \mathscr{O}(n)
$$

together with
\triangleright a distinguished element $1 \in \mathscr{O}(1)$;
\triangleright partial compositions $\circ_{i}: \mathscr{O}(n) \otimes \mathscr{O}(m) \rightarrow \mathscr{O}(n+m-1), \forall 1 \leq i \leq n ;$
satisfying axioms (next slide).

- Example: the operad End V of (multi-)linear mappings on the vector space V;
$\triangleright \operatorname{End}_{V}(n):=\operatorname{Hom}\left(V^{\otimes n}, V\right) \ni \mathbf{x}:\left(v_{1}, \cdots, v_{n}\right) \mapsto \mathbf{x}\left(v_{1}, \cdots, v_{n}\right) ;$
- A (nonsymmetric linear) operad is a positively graded (K) \mathbb{K})vector space

$$
\mathscr{O}=\bigoplus_{n \in \mathbb{N}} \mathscr{O}(n)
$$

together with
\triangleright a distinguished element $1 \in \mathscr{O}(1)$;
\triangleright partial compositions $\circ_{i}: \mathscr{O}(n) \otimes \mathscr{O}(m) \rightarrow \mathscr{O}(n+m-1), \forall 1 \leq i \leq n ;$
satisfying axioms (next slide).

- Example: the operad End V of (multi-)linear mappings on the vector space V;
$\triangleright \operatorname{End}_{V}(n):=\operatorname{Hom}\left(V^{\otimes n}, V\right) \ni \mathbf{x}:\left(v_{1}, \cdots, v_{n}\right) \mapsto \mathbf{x}\left(v_{1}, \cdots, v_{n}\right) ;$
$\triangleright \operatorname{End}_{v}(1) \ni \mathbf{1}=\mathrm{id}_{v}: v \mapsto v ;$
- A (nonsymmetric linear) operad is a positively graded (K) \mathbb{K})vector space

$$
\mathscr{O}=\bigoplus_{n \in \mathbb{N}} \mathscr{O}(n)
$$

together with
\triangleright a distinguished element $\mathbf{1} \in \mathscr{O}(1)$;
\triangleright partial compositions $\circ_{i}: \mathscr{O}(n) \otimes \mathscr{O}(m) \rightarrow \mathscr{O}(n+m-1), \forall 1 \leq i \leq n ;$
satisfying axioms (next slide).

- Example: the operad End ${ }_{V}$ of (multi-)linear mappings on the vector space V;
$\triangleright \operatorname{End}_{v}(n):=\operatorname{Hom}\left(V^{\otimes n}, V\right) \ni \mathbf{x}:\left(v_{1}, \cdots, v_{n}\right) \mapsto \mathbf{x}\left(v_{1}, \cdots, v_{n}\right) ;$
$\triangleright \operatorname{End}_{v}(1) \ni \mathbf{1}=\mathrm{id}_{v}: v \mapsto v$;
$\triangleright \forall x \in \operatorname{End}_{V}(n), \mathbf{y} \in \operatorname{End}_{V}(m), 1 \leq i \leq n$,

$$
x \circ_{i} y:\left(v_{1}, \cdots, v_{n+m-1}\right) \mapsto x\left(v_{1}, \cdots, v_{i-1}, y\left(v_{i}, \cdots, v_{i+m-1}\right), v_{i+m}, \cdots, v_{m+n-1}\right)
$$

- A (nonsymmetric linear) operad is a positively graded (K) \mathbb{K})vector space

$$
\mathscr{O}=\bigoplus_{n \in \mathbb{N}} \mathscr{O}(n)
$$

together with
\triangleright a distinguished element $\mathbf{1} \in \mathscr{O}(1)$;
\triangleright partial compositions $\circ_{i}: \mathscr{O}(n) \otimes \mathscr{O}(m) \rightarrow \mathscr{O}(n+m-1), \forall 1 \leq i \leq n ;$
satisfying axioms (next slide).

- Example: the operad End ${ }_{V}$ of (multi-)linear mappings on the vector space V;
$\triangleright \operatorname{End}_{v}(n):=\operatorname{Hom}\left(V^{\otimes n}, V\right) \ni \mathbf{x}:\left(v_{1}, \cdots, v_{n}\right) \mapsto \mathbf{x}\left(v_{1}, \cdots, v_{n}\right) ;$
$\triangleright \operatorname{End}_{v}(1) \ni \mathbf{1}=\mathrm{id}_{v}: v \mapsto v$;
$\triangleright \forall x \in \operatorname{End}_{V}(n), \mathbf{y} \in \operatorname{End}_{V}(m), 1 \leq \mathbf{i} \leq n$,

$$
x o_{i} y:\left(v_{1}, \cdots, v_{n+m-1}\right) \mapsto x\left(v_{1}, \cdots, v_{i-1}, y\left(v_{i}, \cdots, v_{i+m-1}\right), v_{i+m}, \cdots, v_{m+n-1}\right)
$$

How to construct operads?

- A (nonsymmetric linear) operad is a positively graded (K) \mathbb{K})vector space

$$
\mathscr{O}=\bigoplus_{n \in \mathbb{N}} \mathscr{O}(n),
$$

together with
\triangleright a distinguished element $\mathbf{1} \in \mathscr{O}(1)$;
\triangleright partial compositions $\circ_{i}: \mathscr{O}(n) \otimes \mathscr{O}(m) \rightarrow \mathscr{O}(n+m-1), \forall 1 \leq i \leq n$;
satisfying axioms (next slide).

- Example: the operad End V of (multi-)linear mappings on the vector space V;
$\triangleright \operatorname{End}_{v}(n):=\operatorname{Hom}\left(V^{\otimes n}, V\right) \ni \mathbf{x}:\left(v_{1}, \cdots, v_{n}\right) \mapsto \mathbf{x}\left(v_{1}, \cdots, v_{n}\right) ;$
$\triangleright \operatorname{End}_{v}(1) \ni \mathbf{1}=\operatorname{id}_{v}: v \mapsto v ;$
$\triangleright \forall x \in \operatorname{End}_{V}(n), \mathbf{y} \in \operatorname{End}_{V}(m), 1 \leq i \leq n$,

$$
x \circ_{i} y:\left(v_{1}, \cdots, v_{n+m-1}\right) \mapsto x\left(v_{1}, \cdots, v_{i-1}, y\left(v_{i}, \cdots, v_{i+m-1}\right), v_{i+m}, \cdots, v_{m+n-1}\right)
$$

- How to construct operads?
\triangleright Using presentations by generators and relations $\langle\mathscr{X} \mid \mathscr{R}\rangle$.
- The free operad $\mathscr{F}(\mathscr{X})$ over a graded set \mathscr{X} is constructed as follows:
- The free operad $\mathscr{F}(\mathscr{X})$ over a graded set \mathscr{X} is constructed as follows:
$\triangleright \mathrm{x} \in \mathscr{X}(n)$ is represented by a labelled node with n leaves:
- The free operad $\mathscr{F}(\mathscr{X})$ over a graded set \mathscr{X} is constructed as follows:
$\triangleright \mathrm{x} \in \mathscr{X}(n)$ is represented by a labelled node with n leaves:

$\triangleright \mathscr{F}(\mathscr{X}):=\{$ linear combinations of syntactic trees $\}$

- The free operad $\mathscr{F}(\mathscr{X})$ over a graded set \mathscr{X} is constructed as follows:
$\triangleright \mathrm{x} \in \mathscr{X}(n)$ is represented by a labelled node with n leaves:

$\triangleright \mathscr{F}(\mathscr{X}):=\{$ linear combinations of syntactic trees $\}, \mathbf{1}$: the thread;

- The free operad $\mathscr{F}(\mathscr{X})$ over a graded set \mathscr{X} is constructed as follows:
$\triangleright \mathrm{x} \in \mathscr{X}(n)$ is represented by a labelled node with n leaves:

$\triangleright \mathscr{F}(\mathscr{X}):=\{$ linear combinations of syntactic trees $\}, \mathbf{1}$: the thread;

$\triangleright x o_{i} \mathbf{y}$: obtained by grafting the root of \mathbf{y} on the i-th leaf of \mathbf{x}.
- The free operad $\mathscr{F}(\mathscr{X})$ over a graded set \mathscr{X} is constructed as follows:
$\triangleright \mathrm{x} \in \mathscr{X}(n)$ is represented by a labelled node with n leaves:

$\triangleright \mathscr{F}(\mathscr{X}):=\{$ linear combinations of syntactic trees $\}, \mathbf{1}$: the thread;

$\triangleright \mathbf{x} \circ_{i} \mathbf{y}$: obtained by grafting the root of \mathbf{y} on the i-th leaf of \mathbf{x}.
- The free operad $\mathscr{F}(\mathscr{X})$ over a graded set \mathscr{X} is constructed as follows:
$\triangleright \mathrm{x} \in \mathscr{X}(n)$ is represented by a labelled node with n leaves:

$\triangleright \mathscr{F}(\mathscr{X}):=\{$ linear combinations of syntactic trees $\}, \mathbf{1}$: the thread;

$\triangleright \mathbf{x} \circ_{i} \mathbf{y}$: obtained by grafting the root of \mathbf{y} on the i-th leaf of \mathbf{x}.
- The compositions satisfy axioms:
- The free operad $\mathscr{F}(\mathscr{X})$ over a graded set \mathscr{X} is constructed as follows:
$\triangleright \mathrm{x} \in \mathscr{X}(n)$ is represented by a labelled node with n leaves:

$\triangleright \mathscr{F}(\mathscr{X}):=\{$ linear combinations of syntactic trees $\}, \mathbf{1}$: the thread;

$\triangleright \mathbf{x} \circ_{i} \mathbf{y}$: obtained by grafting the root of \mathbf{y} on the i-th leaf of \mathbf{x}.
- The compositions satisfy axioms:
\triangleright neutrality of $\mathbf{1}$ for each $\circ_{i}: \mathbf{1} \circ_{1} \mathbf{x}=\mathbf{x}=\mathbf{x} \circ_{i} \mathbf{1}$;
- The free operad $\mathscr{F}(\mathscr{X})$ over a graded set \mathscr{X} is constructed as follows:
$\triangleright \mathrm{x} \in \mathscr{X}(n)$ is represented by a labelled node with n leaves:

$\triangleright \mathscr{F}(\mathscr{X}):=\{$ linear combinations of syntactic trees $\}, \mathbf{1}$: the thread;

$\triangleright \mathbf{x} \circ_{i} \mathbf{y}$: obtained by grafting the root of \mathbf{y} on the i-th leaf of \mathbf{x}.
- The compositions satisfy axioms:
\triangleright neutrality of $\mathbf{1}$ for each $\circ_{i}: \mathbf{1} \circ_{1} \mathbf{x}=\mathbf{x}=\mathbf{x} \circ_{i} \mathbf{1}$;
\triangleright associativity of sequential compositions: $\mathbf{x} \circ_{i}\left(\mathbf{y} \circ_{j} \mathbf{z}\right)=\left(\mathbf{x} \circ_{i} \mathbf{y}\right) \circ_{i+j-1} \mathbf{z}$;
- The free operad $\mathscr{F}(\mathscr{X})$ over a graded set \mathscr{X} is constructed as follows:
$\triangleright \mathrm{x} \in \mathscr{X}(n)$ is represented by a labelled node with n leaves:

$\triangleright \mathscr{F}(\mathscr{X}):=\{$ linear combinations of syntactic trees $\}, \mathbf{1}$: the thread;

$\triangleright \mathbf{x} \circ_{i} \mathbf{y}$: obtained by grafting the root of \mathbf{y} on the i-th leaf of \mathbf{x}.
- The compositions satisfy axioms:
\triangleright neutrality of $\mathbf{1}$ for each $\circ_{i}: \mathbf{1} \circ_{1} \mathbf{x}=\mathbf{x}=\mathbf{x} \circ_{i} \mathbf{1}$;
\triangleright associativity of sequential compositions: $\mathbf{x} \circ_{i}\left(\mathbf{y} \circ_{j} \mathbf{z}\right)=\left(\mathbf{x} \circ_{i} \mathbf{y}\right) \circ_{i+j-1} \mathbf{z}$;
\triangleright commutativity of parallel compositions: $\left(\mathbf{x} \circ_{i} \mathbf{y}\right) \circ_{j+m-1} \mathbf{z}=\left(\mathbf{x} \circ_{j} \mathbf{z}\right) \circ_{i} \mathbf{y}$, where $i<j$ and m is the arity of \mathbf{y}.
- Given $\mathscr{R} \subseteq \mathscr{F}(\mathscr{X})$, the operad presented by $\langle\mathscr{X} \mid \mathscr{R}\rangle$ is constructed as follows:
- Given $\mathscr{R} \subseteq \mathscr{F}(\mathscr{X})$, the operad presented by $\langle\mathscr{X} \mid \mathscr{R}\rangle$ is constructed as follows: $\triangleright \equiv \mathscr{R}$: the operadic congruence generated by \mathscr{R}, that is $\mathbf{x} \equiv \mathscr{R} 0$ for every $\mathbf{x} \in \mathscr{R}$;
- Given $\mathscr{R} \subseteq \mathscr{F}(\mathscr{X})$, the operad presented by $\langle\mathscr{X} \mid \mathscr{R}\rangle$ is constructed as follows: $\triangleright \equiv \mathscr{R}$: the operadic congruence generated by \mathscr{R}, that is $\mathrm{x} \equiv \mathscr{R} 0$ for every $\mathrm{x} \in \mathscr{R}$; $\triangleright \mathscr{I}(\mathscr{R}):=\{\mathbf{x} \in \mathscr{F}(\mathscr{X}) \mid \mathbf{x} \equiv \mathscr{R} 0\}:$ the operadic ideal generated by \mathscr{R};
- Given $\mathscr{R} \subseteq \mathscr{F}(\mathscr{X})$, the operad presented by $\langle\mathscr{X} \mid \mathscr{R}\rangle$ is constructed as follows:
$\triangleright \equiv \mathscr{R}$: the operadic congruence generated by \mathscr{R}, that is $\mathbf{x} \equiv \mathscr{R} 0$ for every $\mathbf{x} \in \mathscr{R}$;
$\triangleright \mathscr{I}(\mathscr{R}):=\{\mathbf{x} \in \mathscr{F}(\mathscr{X}) \mid \mathbf{x} \equiv \mathscr{R} 0\}:$ the operadic ideal generated by \mathscr{R};
$\triangleright \mathscr{O}\langle\mathscr{X} \mid \mathscr{R}\rangle:=\mathscr{F}(\mathscr{X}) / \mathscr{I}(\mathscr{R})$.
- Given $\mathscr{R} \subseteq \mathscr{F}(\mathscr{X})$, the operad presented by $\langle\mathscr{X} \mid \mathscr{R}\rangle$ is constructed as follows:
$\triangleright \equiv \mathscr{R}$: the operadic congruence generated by \mathscr{R}, that is $\mathbf{x} \equiv \mathscr{R} 0$ for every $\mathbf{x} \in \mathscr{R}$;
$\triangleright \mathscr{I}(\mathscr{R}):=\{\mathbf{x} \in \mathscr{F}(\mathscr{X}) \mid \mathbf{x} \equiv \mathscr{R} 0\}:$ the operadic ideal generated by \mathscr{R};
$\triangleright \mathscr{O}\langle\mathscr{X} \mid \mathscr{R}\rangle:=\mathscr{F}(\mathscr{X}) / \mathscr{I}(\mathscr{R})$.
- $1^{\text {st }}$ example: the unital associative operad is presented by
- Given $\mathscr{R} \subseteq \mathscr{F}(\mathscr{X})$, the operad presented by $\langle\mathscr{X} \mid \mathscr{R}\rangle$ is constructed as follows:
$\triangleright \equiv_{\mathscr{R}}$: the operadic congruence generated by \mathscr{R}, that is $\mathbf{x} \equiv \mathscr{R} 0$ for every $\mathbf{x} \in \mathscr{R}$;
$\triangleright \mathscr{I}(\mathscr{R}):=\{\mathbf{x} \in \mathscr{F}(\mathscr{X}) \mid \mathbf{x} \equiv \mathscr{R} 0\}$: the operadic ideal generated by \mathscr{R};
$\triangleright \mathscr{O}\langle\mathscr{X} \mid \mathscr{R}\rangle:=\mathscr{F}(\mathscr{X}) / \mathscr{I}(\mathscr{R})$.
$1^{\text {st }}$ example: the unital associative operad is presented by \triangleright one 0 -ary generator (\rightsquigarrow the unit)
- Given $\mathscr{R} \subseteq \mathscr{F}(\mathscr{X})$, the operad presented by $\langle\mathscr{X} \mid \mathscr{R}\rangle$ is constructed as follows:
$\triangleright \equiv_{\mathscr{R}}$: the operadic congruence generated by \mathscr{R}, that is $\mathbf{x} \equiv_{\mathscr{R}} 0$ for every $\mathbf{x} \in \mathscr{R}$;
$\triangleright \mathscr{I}(\mathscr{R}):=\{\mathbf{x} \in \mathscr{F}(\mathscr{X}) \mid \mathbf{x} \equiv \mathscr{R} 0\}$: the operadic ideal generated by \mathscr{R};
$\triangleright \mathscr{O}\langle\mathscr{X} \mid \mathscr{R}\rangle:=\mathscr{F}(\mathscr{X}) / \mathscr{I}(\mathscr{R})$.
$1^{\text {st }}$ example: the unital associative operad is presented by
\triangleright one 0-ary generator (\rightsquigarrow the unit) and one binary generator (\rightsquigarrow the multiplication);

- Given $\mathscr{R} \subseteq \mathscr{F}(\mathscr{X})$, the operad presented by $\langle\mathscr{X} \mid \mathscr{R}\rangle$ is constructed as follows:
$\triangleright \equiv_{\mathscr{R}}$: the operadic congruence generated by \mathscr{R}, that is $\mathbf{x} \equiv_{\mathscr{R}} 0$ for every $\mathbf{x} \in \mathscr{R}$;
$\triangleright \mathscr{I}(\mathscr{R}):=\{\mathbf{x} \in \mathscr{F}(\mathscr{X}) \mid \mathbf{x} \equiv \mathscr{R} 0\}:$ the operadic ideal generated by \mathscr{R};
$\triangleright \mathscr{O}\langle\mathscr{X} \mid \mathscr{R}\rangle:=\mathscr{F}(\mathscr{X}) / \mathscr{I}(\mathscr{R})$.
$1^{\text {st }}$ example: the unital associative operad is presented by
\triangleright one 0-ary generator (\rightsquigarrow the unit) and one binary generator (\rightsquigarrow the multiplication);

\triangleright the neutrality relations

$$
Y \equiv 1 \quad Y \equiv 1
$$

- Given $\mathscr{R} \subseteq \mathscr{F}(\mathscr{X})$, the operad presented by $\langle\mathscr{X} \mid \mathscr{R}\rangle$ is constructed as follows:
$\triangleright \equiv_{\mathscr{R}}$: the operadic congruence generated by \mathscr{R}, that is $\mathbf{x} \equiv_{\mathscr{R}} 0$ for every $\mathbf{x} \in \mathscr{R}$;
$\triangleright \mathscr{I}(\mathscr{R}):=\{\mathbf{x} \in \mathscr{F}(\mathscr{X}) \mid \mathbf{x} \equiv \mathscr{R} 0\}:$ the operadic ideal generated by \mathscr{R};
$\triangleright \mathscr{O}\langle\mathscr{X} \mid \mathscr{R}\rangle:=\mathscr{F}(\mathscr{X}) / \mathscr{I}(\mathscr{R})$.
$1^{\text {st }}$ example: the unital associative operad is presented by
\triangleright one 0-ary generator (\rightsquigarrow the unit) and one binary generator (\rightsquigarrow the multiplication);

\triangleright the neutrality relations and the associativity relation;

$$
Y \equiv 1 \quad Y \equiv 1 \quad Y \equiv \searrow
$$

- Given $\mathscr{R} \subseteq \mathscr{F}(\mathscr{X})$, the operad presented by $\langle\mathscr{X} \mid \mathscr{R}\rangle$ is constructed as follows:
$\triangleright \equiv_{\mathscr{R}}$: the operadic congruence generated by \mathscr{R}, that is $\mathbf{x} \equiv_{\mathscr{R}} 0$ for every $\mathbf{x} \in \mathscr{R}$;
$\triangleright \mathscr{I}(\mathscr{R}):=\left\{\mathbf{x} \in \mathscr{F}(\mathscr{X}) \mid \mathbf{x} \equiv_{\mathscr{R}} 0\right\}$: the operadic ideal generated by \mathscr{R};
$\triangleright \mathscr{O}\langle\mathscr{X} \mid \mathscr{R}\rangle:=\mathscr{F}(\mathscr{X}) / \mathscr{I}(\mathscr{R})$.
$1^{\text {st }}$ example: the unital associative operad is presented by
\triangleright one 0-ary generator (\rightsquigarrow the unit) and one binary generator (\rightsquigarrow the multiplication);

\triangleright the neutrality relations and the associativity relation;

$$
Y \equiv 1 \quad Y \equiv 1 \quad Y \equiv V
$$

- $2^{\text {nd }}$ example: the differential associative operad is presented by
- Given $\mathscr{R} \subseteq \mathscr{F}(\mathscr{X})$, the operad presented by $\langle\mathscr{X} \mid \mathscr{R}\rangle$ is constructed as follows:
$\triangleright \equiv_{\mathscr{R}}$: the operadic congruence generated by \mathscr{R}, that is $\mathbf{x} \equiv_{\mathscr{R}} 0$ for every $\mathbf{x} \in \mathscr{R}$;
$\triangleright \mathscr{I}(\mathscr{R}):=\{\mathbf{x} \in \mathscr{F}(\mathscr{X}) \mid \mathbf{x} \equiv \mathscr{R} 0\}$: the operadic ideal generated by $\mathscr{R} ;$
$\triangleright \mathscr{O}\langle\mathscr{X} \mid \mathscr{R}\rangle:=\mathscr{F}(\mathscr{X}) / \mathscr{I}(\mathscr{R})$.
$1^{\text {st }}$ example: the unital associative operad is presented by
\triangleright one 0-ary generator (\rightsquigarrow the unit) and one binary generator (\rightsquigarrow the multiplication);

\triangleright the neutrality relations and the associativity relation;

$$
Y \equiv 1 \quad Y \equiv 1 \quad Y \equiv V
$$

- $2^{\text {nd }}$ example: the differential associative operad is presented by
\triangleright one 0-ary generator, one binary generator and one unary generator (\rightsquigarrow the differential);

- Given $\mathscr{R} \subseteq \mathscr{F}(\mathscr{X})$, the operad presented by $\langle\mathscr{X} \mid \mathscr{R}\rangle$ is constructed as follows:
$\triangleright \equiv_{\mathscr{R}}$: the operadic congruence generated by \mathscr{R}, that is $\mathbf{x} \equiv_{\mathscr{R}} 0$ for every $\mathbf{x} \in \mathscr{R}$;
$\triangleright \mathscr{I}(\mathscr{R}):=\{\mathbf{x} \in \mathscr{F}(\mathscr{X}) \mid \mathbf{x} \equiv \mathscr{R} 0\}$: the operadic ideal generated by $\mathscr{R} ;$
$\triangleright \mathscr{O}\langle\mathscr{X} \mid \mathscr{R}\rangle:=\mathscr{F}(\mathscr{X}) / \mathscr{I}(\mathscr{R})$.
$1^{\text {st }}$ example: the unital associative operad is presented by
\triangleright one 0-ary generator (\rightsquigarrow the unit) and one binary generator (\rightsquigarrow the multiplication);

\triangleright the neutrality relations and the associativity relation;

$$
Y \equiv 1 \quad Y \equiv 1 \quad Y \equiv V
$$

- $2^{\text {nd }}$ example: the differential associative operad is presented by
\triangleright one 0-ary generator, one binary generator and one unary generator (\rightsquigarrow the differential);

\triangleright the neutrality and associativity relations and the Leibniz's identity;

- Gröbner bases for operads:
\triangleright convergent (i.e. terminating and confluent) rewrite systems on $\mathscr{F}(\mathscr{X})$;
\triangleright a confluence criterion: the Diamond's Lemma [Dotsenko-Khoroshkin 2010].
- Gröbner bases for operads:
\triangleright convergent (i.e. terminating and confluent) rewrite systems on $\mathscr{F}(\mathscr{X})$;
\triangleright a confluence criterion: the Diamond's Lemma [Dotsenko-Khoroshkin 2010].
- Case of the untial associative operad:
\triangleright a Gröbner basis is induced by the rewrite rules:

- Gröbner bases for operads:
\triangleright convergent (i.e. terminating and confluent) rewrite systems on $\mathscr{F}(\mathscr{X})$;
\triangleright a confluence criterion: the Diamond's Lemma [Dotsenko-Khoroshkin 2010].
- Case of the untial associative operad:
\triangleright a Gröbner basis is induced by the rewrite rules:

\triangleright indeed, all critical pairs are confluent; for instance

- Gröbner bases for operads:
\triangleright convergent (i.e. terminating and confluent) rewrite systems on $\mathscr{F}(\mathscr{X})$;
\triangleright a confluence criterion: the Diamond's Lemma [Dotsenko-Khoroshkin 2010].
- Case of the untial associative operad:
\triangleright a Gröbner basis is induced by the rewrite rules:

\triangleright indeed, all critical pairs are confluent; for instance

- Gröbner bases for operads:
\triangleright convergent (i.e. terminating and confluent) rewrite systems on $\mathscr{F}(\mathscr{X})$;
\triangleright a confluence criterion: the Diamond's Lemma [Dotsenko-Khoroshkin 2010].
- Case of the untial associative operad:
\triangleright a Gröbner basis is induced by the rewrite rules:

\triangleright indeed, all critical pairs are confluent; for instance

- Gröbner bases for operads:
\triangleright convergent (i.e. terminating and confluent) rewrite systems on $\mathscr{F}(\mathscr{X})$;
\triangleright a confluence criterion: the Diamond's Lemma [Dotsenko-Khoroshkin 2010].
- Case of the untial associative operad:
\triangleright a Gröbner basis is induced by the rewrite rules:

\triangleright indeed, all critical pairs are confluent; for instance

- Gröbner bases for operads:
\triangleright convergent (i.e. terminating and confluent) rewrite systems on $\mathscr{F}(\mathscr{X})$;
\triangleright a confluence criterion: the Diamond's Lemma [Dotsenko-Khoroshkin 2010].
- Case of the untial associative operad:
\triangleright a Gröbner basis is induced by the rewrite rules:

\triangleright indeed, all critical pairs are confluent; for instance

- Gröbner bases for operads:
\triangleright convergent (i.e. terminating and confluent) rewrite systems on $\mathscr{F}(\mathscr{X})$;
\triangleright a confluence criterion: the Diamond's Lemma [Dotsenko-Khoroshkin 2010].
- Case of the untial associative operad:
\triangleright a Gröbner basis is induced by the rewrite rules:

\triangleright indeed, all critical pairs are confluent; for instance

- Gröbner bases for operads:
\triangleright convergent (i.e. terminating and confluent) rewrite systems on $\mathscr{F}(\mathscr{X})$;
\triangleright a confluence criterion: the Diamond's Lemma [Dotsenko-Khoroshkin 2010].
- Case of the untial associative operad:
\triangleright a Gröbner basis is induced by the rewrite rules:

\triangleright indeed, all critical pairs are confluent; for instance

- Gröbner bases for operads:
\triangleright convergent (i.e. terminating and confluent) rewrite systems on $\mathscr{F}(\mathscr{X})$;
\triangleright a confluence criterion: the Diamond's Lemma [Dotsenko-Khoroshkin 2010].
- Case of the untial associative operad:
\triangleright a Gröbner basis is induced by the rewrite rules:

\triangleright indeed, all critical pairs are confluent; for instance

- Gröbner bases for operads:
\triangleright convergent (i.e. terminating and confluent) rewrite systems on $\mathscr{F}(\mathscr{X})$;
\triangleright a confluence criterion: the Diamond's Lemma [Dotsenko-Khoroshkin 2010].
- Case of the untial associative operad:
\triangleright a Gröbner basis is induced by the rewrite rules:

\triangleright indeed, all critical pairs are confluent; for instance

\triangleright some combinatorial consequences: right comb trees form a linear bases, the coefficients of the Hilbert series are equal to 1 ;
- Gröbner bases for operads:
\triangleright convergent (i.e. terminating and confluent) rewrite systems on $\mathscr{F}(\mathscr{X})$;
\triangleright a confluence criterion: the Diamond's Lemma [Dotsenko-Khoroshkin 2010].
- Case of the untial associative operad:
\triangleright a Gröbner basis is induced by the rewrite rules:

\triangleright indeed, all critical pairs are confluent; for instance

\triangleright some combinatorial consequences: right comb trees form a linear bases, the coefficients of the Hilbert series are equal to 1 ;
\triangleright a homological consequence: the nonunital associative operad is a Koszul operad.
- Gröbner bases for operads:
\triangleright convergent (i.e. terminating and confluent) rewrite systems on $\mathscr{F}(\mathscr{X})$;
\triangleright a confluence criterion: the Diamond's Lemma [Dotsenko-Khoroshkin 2010].
- Case of the untial associative operad:
\triangleright a Gröbner basis is induced by the rewrite rules:

\triangleright indeed, all critical pairs are confluent; for instance

\triangleright some combinatorial consequences: right comb trees form a linear bases, the coefficients of the Hilbert series are equal to 1 ;
\triangleright a homological consequence: the nonunital associative operad is a Koszul operad.
- Gröbner bases are computed by the Buchberger/Knuth-Bendix's completion procedure.
- We study magmatic quotients
- We study magmatic quotients;
\triangleright the operad CAs ${ }^{(3)}$ belongs to a set of operads CAs $:=\left\{\mathbf{C A s}^{(\gamma)} \mid \gamma \geq 1\right\}$;
\triangleright CAs is included in the set of magmatic quotients.
- We study magmatic quotients;
\triangleright the operad CAs ${ }^{(3)}$ belongs to a set of operads CAs $:=\left\{\mathbf{C A s}^{(\gamma)} \mid \gamma \geq 1\right\}$;
\triangleright CAs is included in the set of magmatic quotients.
- We introduce a lattice structure on magmatic quotients:
\triangleright we define this structure in terms of morphisms between magmatic quotients;
\triangleright we present a Grassmann formula analog for this lattice.
- We study magmatic quotients;
\triangleright the operad CAs ${ }^{(3)}$ belongs to a set of operads CAs $:=\left\{\mathbf{C A s}^{(\gamma)} \mid \gamma \geq 1\right\}$;
\triangleright CAs is included in the set of magmatic quotients.
- We introduce a lattice structure on magmatic quotients:
\triangleright we define this structure in terms of morphisms between magmatic quotients;
\triangleright we present a Grassmann formula analog for this lattice.
- We study the induced poset on CAs:
\triangleright we present new lattice operations on this poset;
\triangleright we study the existence of finite Gröbner bases for CAs ${ }^{(\gamma)}$ operads;
\triangleright we deduce the complete expression of the Hilbert series of CAs ${ }^{(3)}$.

II. Lattice of magmatic quotients

- \mathbb{K} : a fixed field s.t. char $(\mathbb{K}) \neq 2$.
- The magmatic operad \mathbb{K} Mag is the free operad over one binary generator.
$-\mathbb{K}$: a fixed field s.t. char $(\mathbb{K}) \neq 2$.
- The magmatic operad \mathbb{K} Mag is the free operad over one binary generator.
- A magmatic quotient is a quotient operad $\mathscr{O}=\mathbb{K} \mathbf{M a g} / \iota$.
$-\mathbb{K}$: a fixed field s.t. char $(\mathbb{K}) \neq 2$.
- The magmatic operad $\mathbb{K} \mathbf{M a g}$ is the free operad over one binary generator.
- A magmatic quotient is a quotient operad $\mathscr{O}=\mathbb{K} \mathbf{M a g} / \iota$.
\triangleright Alternatively: it is an operad over one binary generator $[\star]_{1}$.
$-\mathbb{K}$: a fixed field s.t. char $(\mathbb{K}) \neq 2$.
- The magmatic operad \mathbb{K} Mag is the free operad over one binary generator.
- A magmatic quotient is a quotient operad $\mathscr{O}=\mathbb{K} \mathbf{M a g} / \iota$.
\triangleright Alternatively: it is an operad over one binary generator $[\star]_{1}$.
$\triangleright \mathcal{Q}(\mathbb{K} \mathbf{M a g}):=\{$ magmatic quotients $\}$.
$-\mathbb{K}$: a fixed field s.t. char $(\mathbb{K}) \neq 2$.
- The magmatic operad \mathbb{K} Mag is the free operad over one binary generator.
- A magmatic quotient is a quotient operad $\mathscr{O}=\mathbb{K} \mathbf{M a g} / ו$.
\triangleright Alternatively: it is an operad over one binary generator $[\star]_{1}$.
$\triangleright \mathcal{Q}(\mathbb{K} \mathbf{M a g}):=\{$ magmatic quotients $\}$.

Lemma. Given $\mathscr{O}_{1}=\mathbb{K} \mathbf{M a g} / \iota_{1}$ and $\mathscr{O}_{2}=\mathbb{K} \mathbf{M a g}_{l_{2}}$, we have $\operatorname{dim}\left(\operatorname{Hom}\left(\mathscr{O}_{1}, \mathscr{O}_{2}\right)\right) \leq 1$.
$-\mathbb{K}$: a fixed field s.t. char $(\mathbb{K}) \neq 2$.

- The magmatic operad \mathbb{K} Mag is the free operad over one binary generator.
- A magmatic quotient is a quotient operad $\mathscr{O}=\mathbb{K} \mathbf{M a g} / ו$.
\triangleright Alternatively: it is an operad over one binary generator $[\star]_{1}$.
$\triangleright \mathcal{Q}(\mathbb{K} \mathbf{M a g}):=\{$ magmatic quotients $\}$.

Lemma. Given $\mathscr{O}_{1}=\mathbb{K} \mathbf{M a g} / \iota_{1}$ and $\mathscr{O}_{2}=\mathbb{K} \mathbf{M a g}_{l_{2}}$, we have $\operatorname{dim}\left(\operatorname{Hom}\left(\mathscr{O}_{1}, \mathscr{O}_{2}\right)\right) \leq 1$.
Sketch of proof. Let $\varphi \in \operatorname{Hom}\left(\mathscr{O}_{1}, \mathscr{O}_{2}\right)$,
\triangleright taking arities into account: $\exists \lambda \in \mathbb{K}$, s.t. $\varphi\left([\star]_{\iota_{1}}\right)=\lambda[\star]_{\iota_{2}}$;
$-\mathbb{K}$: a fixed field s.t. char $(\mathbb{K}) \neq 2$.

- The magmatic operad \mathbb{K} Mag is the free operad over one binary generator.
- A magmatic quotient is a quotient operad $\mathscr{O}=\mathbb{K} \mathbf{M a g} / ו$.
\triangleright Alternatively: it is an operad over one binary generator $[\star]_{1}$.
$\triangleright \mathcal{Q}(\mathbb{K} \mathbf{M a g}):=\{$ magmatic quotients $\}$.

Lemma. Given $\mathscr{O}_{1}=\mathbb{K} \mathbf{M a g} / \iota_{1}$ and $\mathscr{O}_{2}=\mathbb{K} \mathbf{M a g}_{l_{2}}$, we have $\operatorname{dim}\left(\operatorname{Hom}\left(\mathscr{O}_{1}, \mathscr{O}_{2}\right)\right) \leq 1$.
Sketch of proof. Let $\varphi \in \operatorname{Hom}\left(\mathscr{O}_{1}, \mathscr{O}_{2}\right)$,
\triangleright taking arities into account: $\exists \lambda \in \mathbb{K}$, s.t. $\varphi\left([\star]_{l_{1}}\right)=\lambda[\star]_{l_{2}}$;
\triangleright by the universal property of the quotient: if $\lambda \neq 0$, then $I_{1} \subseteq I_{2}$;
$-\mathbb{K}$: a fixed field s.t. char $(\mathbb{K}) \neq 2$.

- The magmatic operad \mathbb{K} Mag is the free operad over one binary generator.
- A magmatic quotient is a quotient operad $\mathscr{O}=\mathbb{K} \mathbf{M a g} / ו$.
\triangleright Alternatively: it is an operad over one binary generator $[\star]_{1}$.
$\triangleright \mathcal{Q}(\mathbb{K} \mathbf{M a g}):=\{$ magmatic quotients $\}$.

Lemma. Given $\mathscr{O}_{1}=\mathbb{K} \mathbf{M a g} / \iota_{1}$ and $\mathscr{O}_{2}=\mathbb{K} \mathbf{M a g}_{l_{2}}$, we have $\operatorname{dim}\left(\operatorname{Hom}\left(\mathscr{O}_{1}, \mathscr{O}_{2}\right)\right) \leq 1$.
Sketch of proof. Let $\varphi \in \operatorname{Hom}\left(\mathscr{O}_{1}, \mathscr{O}_{2}\right)$,
\triangleright taking arities into account: $\exists \lambda \in \mathbb{K}$, s.t. $\varphi\left([\star]_{l_{1}}\right)=\lambda[\star]_{l_{2}}$;
\triangleright by the universal property of the quotient: if $\lambda \neq 0$, then $I_{1} \subseteq I_{2}$;
\triangleright if $I_{1} \subseteq I_{2}$, then $\forall \mu \in \mathbb{K} \backslash\{0\}, \exists \psi \in \operatorname{Hom}\left(\mathscr{O}_{1}, \mathscr{O}_{2}\right)$ s.t. $\psi\left([\star]{I_{1}}\right)=\mu[\star] I_{2}$.

- \mathbb{K} : a fixed field s.t. char $(\mathbb{K}) \neq 2$.
- The magmatic operad \mathbb{K} Mag is the free operad over one binary generator.
- A magmatic quotient is a quotient operad $\mathscr{O}=\mathbb{K} \mathbf{M a g} / \iota$.
\triangleright Alternatively: it is an operad over one binary generator $[\star]_{1}$.
$\triangleright \mathcal{Q}(\mathbb{K} \mathbf{M a g}):=\{$ magmatic quotients $\}$.

Lemma. Given $\mathscr{O}_{1}=\mathbb{K} \mathbf{M a g} / \iota_{1}$ and $\mathscr{O}_{2}=\mathbb{K} \mathbf{M a g}_{l_{2}}$, we have $\operatorname{dim}\left(\operatorname{Hom}\left(\mathscr{O}_{1}, \mathscr{O}_{2}\right)\right) \leq 1$.
Sketch of proof. Let $\varphi \in \operatorname{Hom}\left(\mathscr{O}_{1}, \mathscr{O}_{2}\right)$,
\triangleright taking arities into account: $\exists \lambda \in \mathbb{K}$, s.t. $\varphi\left([\star]_{l_{1}}\right)=\lambda[\star]_{l_{2}}$;
\triangleright by the universal property of the quotient: if $\lambda \neq 0$, then $I_{1} \subseteq I_{2}$;
\triangleright if $I_{1} \subseteq I_{2}$, then $\forall \mu \in \mathbb{K} \backslash\{0\}, \exists \psi \in \operatorname{Hom}\left(\mathscr{O}_{1}, \mathscr{O}_{2}\right)$ s.t. $\psi\left([\star]{I_{1}}\right)=\mu[\star] I_{2}$.

Remark. A nonzero operad morphism between magmatic quotients is surjective.

Let $\mathscr{O}_{1}=\mathbb{K} \mathrm{Mag} / \iota_{1}$ and $\mathscr{O}_{2}=\mathbb{K} \mathrm{Mag} / \iota_{2}$;
\triangleright we have $\operatorname{dim}\left(\operatorname{Hom}\left(\mathscr{O}_{1}, \mathscr{O}_{2}\right)\right) \leq 1$;
$\triangleright \operatorname{dim}\left(\operatorname{Hom}\left(\mathscr{O}_{1}, \mathscr{O}_{2}\right)\right)=1$ iff $I_{1} \subseteq I_{2}$;
$\triangleright \operatorname{dim}\left(\operatorname{Hom}\left(\mathscr{O}_{1}, \mathscr{O}_{2}\right)\right)=1$ iff $\exists \varphi: \mathscr{O}_{1} \rightarrow \mathscr{O}_{2}$ surjective.

Let $\mathscr{O}_{1}=\mathbb{K} \mathrm{Mag} / \iota_{1}$ and $\mathscr{O}_{2}=\mathbb{K} \mathrm{Mag} / \iota_{2}$;
\triangleright we have $\operatorname{dim}\left(\operatorname{Hom}\left(\mathscr{O}_{1}, \mathscr{O}_{2}\right)\right) \leq 1$;
$\triangleright \operatorname{dim}\left(\operatorname{Hom}\left(\mathscr{O}_{1}, \mathscr{O}_{2}\right)\right)=1$ iff $I_{1} \subseteq I_{2} ;$
$\triangleright \operatorname{dim}\left(\operatorname{Hom}\left(\mathscr{O}_{1}, \mathscr{O}_{2}\right)\right)=1$ iff $\exists \varphi: \mathscr{O}_{1} \rightarrow \mathscr{O}_{2}$ surjective.
Let $\preceq_{\mathrm{i}} \subsetneq \mathcal{Q}(\mathbb{K} \mathbf{M a g}) \times \mathcal{Q}(\mathbb{K} \mathbf{M a g})$ defined by
$\triangleright \mathscr{O}_{2} \preceq_{\mathrm{i}} \mathscr{O}_{1}$ iff $\operatorname{dim}\left(\operatorname{Hom}\left(\mathscr{O}_{1}, \mathscr{O}_{2}\right)\right)=1 ;$

Let $\mathscr{O}_{1}=\mathbb{K} \mathrm{Mag} / \iota_{1}$ and $\mathscr{O}_{2}=\mathbb{K} \mathrm{Mag} / \iota_{2}$;
\triangleright we have $\operatorname{dim}\left(\operatorname{Hom}\left(\mathscr{O}_{1}, \mathscr{O}_{2}\right)\right) \leq 1$;
$\triangleright \operatorname{dim}\left(\operatorname{Hom}\left(\mathscr{O}_{1}, \mathscr{O}_{2}\right)\right)=1$ iff $I_{1} \subseteq I_{2} ;$
$\triangleright \operatorname{dim}\left(\operatorname{Hom}\left(\mathscr{O}_{1}, \mathscr{O}_{2}\right)\right)=1$ iff $\exists \varphi: \mathscr{O}_{1} \rightarrow \mathscr{O}_{2}$ surjective.

- Let $\preceq_{\mathrm{i}} \subsetneq \mathcal{Q}(\mathbb{K} \mathbf{M a g}) \times \mathcal{Q}(\mathbb{K} \mathbf{M a g})$ defined by
$\triangleright \mathscr{O}_{2} \preceq_{\mathrm{i}} \mathscr{O}_{1}$ iff $\operatorname{dim}\left(\operatorname{Hom}\left(\mathscr{O}_{1}, \mathscr{O}_{2}\right)\right)=1 ;$
- Let $\wedge_{\mathrm{i}}, \vee_{\mathrm{i}}: \mathcal{Q}(\mathbb{K} \mathbf{M a g}) \times \mathcal{Q}(\mathbb{K} \mathbf{M a g}) \rightarrow \mathcal{Q}(\mathbb{K} \mathbf{M a g})$ defined by
$\triangleright \mathscr{O}_{1} \wedge_{\mathrm{i}} \mathscr{O}_{2}=\mathbb{K} \mathrm{Mag} / \iota_{1}+l_{2} ;$
$\triangleright \mathscr{O}_{1} \vee_{\mathrm{i}} \mathscr{O}_{2}=\mathbb{K} \mathrm{Mag} / \iota_{1} \cap \imath_{2}$.
- Let $\mathscr{O}_{1}=\mathbb{K} \mathbf{M a g} / \iota_{1}$ and $\mathscr{O}_{2}=\mathbb{K} \mathbf{M a g} / \iota_{2}$;
\triangleright we have $\operatorname{dim}\left(\operatorname{Hom}\left(\mathscr{O}_{1}, \mathscr{O}_{2}\right)\right) \leq 1$;
$\triangleright \operatorname{dim}\left(\operatorname{Hom}\left(\mathscr{O}_{1}, \mathscr{O}_{2}\right)\right)=1$ iff $I_{1} \subseteq I_{2}$;
$\triangleright \operatorname{dim}\left(\operatorname{Hom}\left(\mathscr{O}_{1}, \mathscr{O}_{2}\right)\right)=1$ iff $\exists \varphi: \mathscr{O}_{1} \rightarrow \mathscr{O}_{2}$ surjective.
- Let $\preceq_{\mathrm{i}} \subsetneq \mathcal{Q}(\mathbb{K} \mathbf{M a g}) \times \mathcal{Q}(\mathbb{K} \mathbf{M a g})$ defined by
$\triangleright \mathscr{O}_{2} \preceq_{\mathrm{i}} \mathscr{O}_{1}$ iff $\operatorname{dim}\left(\operatorname{Hom}\left(\mathscr{O}_{1}, \mathscr{O}_{2}\right)\right)=1 ;$

Let $\wedge_{i}, \vee_{i}: \mathcal{Q}(\mathbb{K} \mathbf{M a g}) \times \mathcal{Q}(\mathbb{K} \mathbf{M a g}) \rightarrow \mathcal{Q}(\mathbb{K} \mathbf{M a g})$ defined by
$\triangleright \mathscr{O}_{1} \wedge_{\mathrm{i}} \mathscr{O}_{2}=\mathbb{K} \mathrm{Mag} / \iota_{1}+l_{2} ;$
$\triangleright \mathscr{O}_{1} \vee_{\mathrm{i}} \mathscr{O}_{2}=\mathbb{K} \mathrm{Mag} / \iota_{1} \cap \imath_{2}$.

Theorem [C.-Cordero-Giraudo, 2018]. Consider the notations introduced above.
i. The tuple $\left(\mathcal{Q}(\mathbb{K} \mathbf{M a g}), \preceq_{i}, \wedge_{i}, \vee_{i}\right)$ is a lattice.

- Let $\mathscr{O}_{1}=\mathbb{K} \mathbf{M a g} / \iota_{1}$ and $\mathscr{O}_{2}=\mathbb{K} \mathbf{M a g} / \iota_{2}$;
\triangleright we have $\operatorname{dim}\left(\operatorname{Hom}\left(\mathscr{O}_{1}, \mathscr{O}_{2}\right)\right) \leq 1$;
$\triangleright \operatorname{dim}\left(\operatorname{Hom}\left(\mathscr{O}_{1}, \mathscr{O}_{2}\right)\right)=1$ iff $I_{1} \subseteq I_{2}$;
$\triangleright \operatorname{dim}\left(\operatorname{Hom}\left(\mathscr{O}_{1}, \mathscr{O}_{2}\right)\right)=1$ iff $\exists \varphi: \mathscr{O}_{1} \rightarrow \mathscr{O}_{2}$ surjective.
- Let $\preceq_{\mathrm{i}} \subsetneq \mathcal{Q}(\mathbb{K} \mathbf{M a g}) \times \mathcal{Q}(\mathbb{K} \mathbf{M a g})$ defined by
$\triangleright \mathscr{O}_{2} \preceq_{\mathrm{i}} \mathscr{O}_{1}$ iff $\operatorname{dim}\left(\operatorname{Hom}\left(\mathscr{O}_{1}, \mathscr{O}_{2}\right)\right)=1 ;$

Let $\wedge_{\mathrm{i}}, \vee_{\mathrm{i}}: \mathcal{Q}(\mathbb{K} \mathbf{M a g}) \times \mathcal{Q}(\mathbb{K} \mathbf{M a g}) \rightarrow \mathcal{Q}(\mathbb{K} \mathbf{M a g})$ defined by
$\triangleright \mathscr{O}_{1} \wedge_{\mathrm{i}} \mathscr{O}_{2}=\mathbb{K} \mathrm{Mag} / \iota_{1}+\mathrm{I}_{2} ;$
$\triangleright \mathscr{O}_{1} \vee_{\mathrm{i}} \mathscr{O}_{2}=\mathbb{K} \mathrm{Mag} / \iota_{1} \cap \imath_{2}$.

Theorem [C.-Cordero-Giraudo, 2018]. Consider the notations introduced above.
i. The tuple $\left(\mathcal{Q}(\mathbb{K} \mathbf{M a g}), \preceq_{i}, \wedge_{\mathrm{i}}, \vee_{\mathrm{i}}\right)$ is a lattice.
ii. We have the following Grassmann formula analog:

$$
\mathcal{H}_{\mathscr{O}_{1} \vee_{\mathrm{i}} \mathscr{O}_{2}}(t)+\mathcal{H}_{\mathscr{O}_{1} \wedge_{\mathrm{i}} \mathscr{O}_{2}}(t)=\mathcal{H}_{\mathscr{O}_{1}}(t)+\mathcal{H}_{\mathscr{O}_{2}}(t)
$$

Let As $:=\mathbb{K} \mathbf{M a g} / I_{\mathrm{As}}$ and $\mathbf{A A s}:=\mathbb{K} \mathbf{M a g} / I_{\mathrm{AAs}}$, where I_{As} and I_{AAs} are generated by Kand
\triangleright Let $\mathbf{A s}:=\mathbb{K} \mathbf{M a g} / I_{\mathrm{As}}$ and $\mathbf{A A s}:=\mathbb{K} \mathbf{M a g} / I_{\mathrm{AAs}}$, where I_{As} and I_{AAs} are generated by

- Let $2 \mathrm{Nil}:=\mathbf{A s} \wedge_{\mathrm{i}} \mathbf{A A s}$, that is $I_{2 \mathrm{Nii}}=I_{\mathrm{As}}+I_{\mathrm{AAs}}$;
- Let $\mathbf{A s}:=\mathbb{K} \mathbf{M a g} / /_{\mathrm{As}}$ and $\mathbf{A A s}:=\mathbb{K} \mathbf{M a g} / I_{\text {AAs }}$, where I_{As} and I_{AAs} are generated by

- Let $2 \mathrm{Nil}:=\mathbf{A s} \wedge_{\mathrm{i}} \mathbf{A A s}$, that is $I_{2 \mathrm{NiI}}=I_{\mathrm{As}}+I_{\mathrm{AAs}}$;
\triangleright we have

- Let $\mathbf{A s}:=\mathbb{K} \mathbf{M a g} / /_{\mathrm{As}}$ and $\mathbf{A A s}:=\mathbb{K} \mathbf{M a g} / /_{\mathrm{AAs}}$, where I_{As} and I_{AAs} are generated by

- Let $2 \mathrm{Nil}:=\mathbf{A s} \wedge_{\mathrm{i}} \mathbf{A A s}$, that is $I_{2 \mathrm{NiI}}=I_{\mathrm{As}}+I_{\mathrm{AAs}}$;
\triangleright we have

Let $\mathbf{A s}:=\mathbb{K} \mathbf{M a g} / I_{\mathrm{As}}$ and $\mathbf{A A s}:=\mathbb{K} \mathbf{M a g} / I_{\mathrm{AAs}}$, where I_{As} and I_{AAs} are generated by

- Let $2 \mathbf{N i l}:=\mathbf{A s} \wedge_{\mathrm{i}} \mathbf{A A s}$, that is $I_{2 \mathrm{Nil}}=I_{\mathrm{As}}+I_{\mathrm{AAs}}$;
\triangleright we have

\triangleright so that $I_{2 \text { Nil }}$ is generated by

- Let $\mathbf{A s}:=\mathbb{K} \mathbf{M a g} / /_{\mathrm{As}}$ and $\mathbf{A A s}:=\mathbb{K} \mathbf{M a g} / I_{\mathrm{AAs}}$, where I_{As} and I_{AAs} are generated by

- Let $2 \mathbf{N i l}:=\mathbf{A s} \wedge_{\mathrm{i}} \mathbf{A A s}$, that is $I_{2 \mathrm{Nii}}=I_{\mathrm{As}}+I_{\mathrm{AAs}}$;
\triangleright we have

\triangleright so that $l_{2 \text { Nil }}$ is generated by

- Let $\mathbf{A s}:=\mathbb{K} \mathbf{M a g} / /_{\mathrm{As}}$ and $\mathbf{A A s}:=\mathbb{K} \mathbf{M a g} / I_{\mathrm{AAs}}$, where I_{As} and I_{AAs} are generated by

- Let $2 \mathbf{N i l}:=\mathbf{A s} \wedge_{\mathrm{i}} \mathbf{A A s}$, that is $I_{2 \mathrm{Nii}}=I_{\mathrm{As}}+I_{\mathrm{AAs}}$;
\triangleright we have

\triangleright so that $l_{2 \text { Nil }}$ is generated by

Let $\mathbf{A s}:=\mathbb{K} \mathbf{M a g} / I_{\mathrm{As}}$ and $\mathbf{A A s}:=\mathbb{K} \mathbf{M a g} / I_{\mathrm{AAs}}$, where I_{As} and I_{AAs} are generated by

- Let $2 \mathrm{Nil}:=\mathbf{A s} \wedge_{\mathrm{i}} \mathbf{A A s}$, that is $I_{2 \mathrm{NiI}}=I_{\mathrm{As}}+I_{\mathrm{AAs}}$;
\triangleright we have

\triangleright so that $l_{2 \text { Nil }}$ is generated by
 and

Letting $\mathbb{I}_{\mathbb{K R C}}{ }^{(3)}:=\{\mathbf{x}-\mathbf{y} \mid \mathbf{x}$ and \mathbf{y} are trees of arity 4$\}$, we have $\mathbb{K} \mathbf{R C}^{(3)}=\mathbf{A s} \vee_{i} \mathbf{A A s}$;

- Let $\mathbf{A s}:=\mathbb{K} \mathbf{M a g} / /_{\mathrm{As}}$ and $\mathbf{A A s}:=\mathbb{K} \mathbf{M a g} / I_{\text {AAs }}$, where I_{As} and I_{AAs} are generated by

- Let $2 \mathrm{Nil}:=\mathbf{A s} \wedge_{\mathrm{i}} \mathbf{A A s}$, that is $I_{2 \mathrm{NiI}}=I_{\mathrm{As}}+I_{\mathrm{AAs}}$;
\triangleright we have

\triangleright so that $I_{2 N i l}$ is generated by
 and

- Letting $I_{\mathbb{K R C}^{(3)}}:=\{\mathbf{x}-\mathbf{y} \mid \mathbf{x}$ and \mathbf{y} are trees of arity 4$\}$, we have $\mathbb{K} \mathbf{R C}^{(3)}=\mathbf{A s} \vee_{\mathrm{i}} \mathbf{A A s}$;
\triangleright one shows that $I_{\mathbb{K} \mathbf{R C}}{ }^{(3)} \subseteq I_{\mathbf{A s}} \cap I_{\mathbf{A A s}}$, so that $\exists \pi: \mathbb{K} \mathbf{R C}^{(3)} \rightarrow \mathbf{A s} \vee_{\mathrm{i}}$ AAs surjective;

Let $\mathbf{A s}:=\mathbb{K} \mathbf{M a g} / I_{\mathrm{As}}$ and $\mathbf{A A s}:=\mathbb{K} \mathbf{M a g} / I_{\mathrm{AAs}}$, where I_{As} and I_{AAs} are generated by

- Let $2 \mathbf{N i l}:=\mathbf{A s} \wedge_{\mathrm{i}} \mathbf{A A s}$, that is $I_{2 \mathrm{Nil}}=I_{\mathrm{As}}+I_{\mathrm{AAs}}$;
\triangleright we have

\triangleright so that $l_{2 \text { Nil }}$ is generated by
 and

Letting $\boldsymbol{I}_{\mathbb{K R C}}{ }^{(3)}:=\{\mathbf{x}-\mathbf{y} \mid \mathbf{x}$ and \mathbf{y} are trees of arity 4$\}$, we have $\mathbb{K} \mathbf{R C}^{(3)}=\mathbf{A s} \vee_{\mathrm{i}} \mathbf{A A s}$;
\triangleright one shows that $I_{\mathbb{K R C}}{ }^{(3)} \subseteq I_{\mathbf{A s}} \cap I_{\mathbf{A A s}}$, so that $\exists \pi: \mathbb{K} \mathbf{R C}{ }^{(3)} \rightarrow \mathbf{A s} \vee_{\mathrm{i}} \mathbf{A A s}$ surjective;
\triangleright using the Grassmann formula, one shows that π is an isomorphism.

III. Comb associative operads

- $\gamma \geq 1$: a positive integer;
$\triangleright I_{\text {CAs }}(\gamma)$: the ideal generated by

- $\gamma \geq 1$: a positive integer;
$\triangleright I_{\mathrm{CAs}(\gamma)}$: the ideal generated by

$\triangleright \mathbf{C A s}(\gamma):=\mathbf{M a g} /\left.\right|_{\mathbf{C A s}^{(}(\gamma)}$ is called the γ-comb associative operad.
- $\gamma \geq 1$: a positive integer;
$\triangleright I_{\mathrm{CAs}(\gamma)}$: the ideal generated by

$\triangleright \mathbf{C A s}(\gamma):=\mathbf{M a g} / \boldsymbol{I}_{\mathbf{C A s}(\gamma)}$ is called the γ-comb associative operad.
- For instance,
$\triangleright \mathbf{C A s}^{(1)}=\mathbb{K} \mathbf{M a g}, \mathbf{C A s}{ }^{(2)}=\mathbf{A s}$
- $\gamma \geq 1$: a positive integer;
$\triangleright I_{\mathrm{CAs}(\gamma)}$: the ideal generated by

$\triangleright \mathbf{C A s}(\gamma):=\mathbf{M a g} / \boldsymbol{I}_{\mathbf{C A s}(\gamma)}$ is called the γ-comb associative operad.
- For instance,
$\triangleright \mathbf{C A s}^{(1)}=\mathbb{K} \mathbf{M a g}, \mathbf{C A s}^{(2)}=\mathbf{A s}, \mathbf{C A s}{ }^{(3)}$ is submitted to the relations generated by

- $\gamma \geq 1$: a positive integer;
$\triangleright I_{\mathrm{CAs}(\gamma)}$: the ideal generated by

$\triangleright \mathbf{C A s}(\gamma):=\mathbf{M a g} / \boldsymbol{I}_{\mathbf{C A s}(\gamma)}$ is called the γ-comb associative operad.
- For instance,
$\triangleright \mathbf{C A s}^{(1)}=\mathbb{K} \mathbf{M a g}, \mathbf{C A s}{ }^{(2)}=\mathbf{A s}, \mathbf{C A s}{ }^{(3)}$ is submitted to the relations generated by

- Objective of the section: show that

$$
\mathbf{C A s}:=\left\{\mathbf{C A s}^{(\gamma)} \mid \gamma \geq 1\right\}
$$

admits a lattice structure.

- \preceq_{d} : the restriction of \preceq_{i} to CAs;
$\triangleright \mathbf{C A} \mathbf{s}^{(\gamma)} \preceq_{\mathrm{d}} \mathbf{C A} \mathbf{s}^{(\beta)}$ is equivalent to

- \preceq_{d} : the restriction of \preceq_{i} to CAs;
$\triangleright \mathbf{C A s}^{(\gamma)} \preceq_{\mathrm{d}} \mathbf{C A} \mathbf{s}^{(\beta)}$ is equivalent to

\triangleright using an orientation of $\equiv{ }_{{ }_{\mathrm{CAs}}(\gamma)}$:
- \preceq_{d} : the restriction of \preceq_{i} to CAs;
$\triangleright \mathbf{C A s}{ }^{(\gamma)} \preceq_{\mathrm{d}} \mathbf{C A} \mathbf{s}^{(\beta)}$ is equivalent to

\triangleright using an orientation of $\equiv_{I_{C A s}(\gamma)}$: CAs ${ }^{(\gamma)} \preceq_{\mathrm{d}} \mathbf{C A s}{ }^{(\beta)}$ iff $\bar{\gamma} \mid \bar{\beta}($ with $\bar{\alpha}:=\alpha-1)$.
- \preceq_{d} : the restriction of \preceq_{i} to CAs;
$\triangleright \mathbf{C A s}^{(\gamma)} \preceq_{\mathrm{d}} \mathbf{C A} \mathbf{s}^{(\beta)}$ is equivalent to

\triangleright using an orientation of $\equiv I_{{ }_{\text {CAs }}(\gamma)}$: CAs ${ }^{(\gamma)} \preceq_{\mathrm{d}} \mathbf{C A s}{ }^{(\beta)}$ iff $\bar{\gamma} \mid \bar{\beta}$ (with $\bar{\alpha}:=\alpha-1$).
- Let $\wedge_{d}, \vee_{d}: \mathbf{C A s} \times \mathbf{C A s} \rightarrow \mathbf{C A s}$ defined by
$\triangleright \mathbf{C A s}^{(\gamma)} \wedge_{\mathrm{d}} \mathbf{C A s}^{(\beta)}:=\mathbf{C A} \mathbf{s}^{(\operatorname{gcd}(\bar{\gamma}, \bar{\beta})+1)}$;
$\triangleright \mathbf{C A s}^{(\gamma)} \vee_{\mathrm{d}} \mathbf{C A}{ }^{(\beta)}:=\mathbf{C A s}{ }^{(\operatorname{lcm}(\bar{\gamma}, \bar{\beta})+1)}$.
- \preceq_{d} : the restriction of \preceq_{i} to $\mathbf{C A s}$;
$\triangleright \mathbf{C A} \mathbf{s}^{(\gamma)} \preceq_{\mathrm{d}} \mathbf{C A} \mathbf{s}^{(\beta)}$ is equivalent to

\triangleright using an orientation of $\equiv_{I_{\text {CAs }}(\gamma)}$: $\mathbf{C A s}{ }^{(\gamma)} \preceq_{\mathrm{d}} \mathbf{C A s}{ }^{(\beta)}$ iff $\bar{\gamma} \mid \bar{\beta}$ (with $\bar{\alpha}:=\alpha-1$).
- Let $\wedge_{d}, \vee_{d}: \mathbf{C A s} \times \mathbf{C A s} \rightarrow \mathbf{C A s}$ defined by
$\triangleright \mathbf{C A s}^{(\gamma)} \wedge_{\mathrm{d}} \mathbf{C A s}^{(\beta)}:=\mathbf{C A} \mathbf{s}^{(\operatorname{gcd}(\bar{\gamma}, \bar{\beta})+1)}$;
$\triangleright \mathbf{C A s}^{(\gamma)} \vee_{\mathrm{d}} \mathbf{C A} \mathbf{s}^{(\beta)}:=\mathbf{C A s}{ }^{(\operatorname{lcm}(\bar{\gamma}, \bar{\beta})+1)}$.
Theorem [C.-Cordero-Giraudo, 2018]. The tuple $\left(\mathbf{C A s}, \preceq_{d}, \wedge_{d}, \vee_{d}\right)$ is a lattice.
- \preceq_{d} : the restriction of \preceq_{i} to CAs;
$\triangleright \mathbf{C A s}{ }^{(\gamma)} \preceq_{\mathrm{d}} \mathbf{C A} \mathbf{s}^{(\beta)}$ is equivalent to

\triangleright using an orientation of $\equiv I_{\text {CAs }}(\gamma)$: $\mathbf{C A s}{ }^{(\gamma)} \preceq_{\mathrm{d}} \mathbf{C A s}^{(\beta)}$ iff $\bar{\gamma} \mid \bar{\beta}$ (with $\bar{\alpha}:=\alpha-1$).
- Let $\wedge_{d}, \vee_{d}: \mathbf{C A s} \times \mathbf{C A s} \rightarrow \mathbf{C A s}$ defined by
$\triangleright \mathbf{C A} \mathbf{s}^{(\gamma)} \wedge_{\mathrm{d}} \mathbf{C A} \mathbf{s}^{(\beta)}:=\mathbf{C A}{ }^{(\operatorname{gcd}(\bar{\gamma}, \bar{\beta})+1)}$;
$\triangleright \mathbf{C A s}^{(\gamma)} \vee_{\mathrm{d}} \mathbf{C A} \mathbf{s}^{(\beta)}:=\mathbf{C A} \mathbf{s}^{(\mathrm{km}(\bar{\gamma}, \bar{\beta})+1)}$.
Theorem [C.-Cordero-Giraudo, 2018]. The tuple $\left(\mathbf{C A s}, \preceq_{d}, \wedge_{d}, \vee_{d}\right)$ is a lattice.
Remark. $\left(\mathbf{C A s}, \preceq_{\mathrm{d}}, \wedge_{\mathrm{d}}, \vee_{\mathrm{d}}\right)$ does not embed into $\left(\mathcal{Q}(\mathbb{K} \mathbf{M a g}), \preceq_{\mathrm{i}}, \wedge_{\mathrm{i}}, \vee_{\mathrm{i}}\right)$ as a sublattice:

- \preceq_{d} : the restriction of \preceq_{i} to CAs;
$\triangleright \mathbf{C A s}{ }^{(\gamma)} \preceq_{\mathrm{d}} \mathbf{C A} \mathbf{s}^{(\beta)}$ is equivalent to

\triangleright using an orientation of $\equiv_{I_{\text {CAs }}(\gamma)}$: $\mathbf{C A s}{ }^{(\gamma)} \preceq_{\mathrm{d}} \mathbf{C A s}{ }^{(\beta)}$ iff $\bar{\gamma} \mid \bar{\beta}$ (with $\bar{\alpha}:=\alpha-1$).
- Let $\wedge_{d}, \vee_{d}: \mathbf{C A s} \times \mathbf{C A s} \rightarrow \mathbf{C A s}$ defined by
$\triangleright \mathbf{C A} \mathbf{s}^{(\gamma)} \wedge_{\mathrm{d}} \mathbf{C A} \mathbf{s}^{(\beta)}:=\mathbf{C A} \mathbf{s}^{(\operatorname{gcd}(\bar{\gamma}, \bar{\beta})+1)}$;
$\triangleright \mathbf{C A s}^{(\gamma)} \vee_{\mathrm{d}} \mathbf{C A} \mathbf{s}^{(\beta)}:=\mathbf{C A s}{ }^{(\operatorname{lcm}(\bar{\gamma}, \bar{\beta})+1)}$.
Theorem [C.-Cordero-Giraudo, 2018]. The tuple $\left(\mathbf{C A s}, \preceq_{d}, \wedge_{d}, \vee_{d}\right)$ is a lattice.
Remark. $\left(\mathbf{C A s}, \preceq_{\mathrm{d}}, \wedge_{\mathrm{d}}, \vee_{\mathrm{d}}\right)$ does not embed into $\left(\mathcal{Q}(\mathbb{K} \mathbf{M a g}), \preceq_{\mathrm{i}}, \wedge_{\mathrm{i}}, \vee_{\mathrm{i}}\right)$ as a sublattice:

$$
\searrow \equiv_{{ }_{C A s}(3) \wedge_{d} C A s^{(4)}} \searrow
$$

since $\mathbf{C A} \mathbf{s}^{(3)} \wedge_{\mathrm{d}} \mathbf{C A} \mathbf{s}^{(4)}=\mathbf{C A} \mathbf{s}^{(\operatorname{gcd}(2,3)+1)}=\mathbf{C A} \mathbf{s}^{(2)}=\mathbf{A s}$.

- The orientation of $\equiv_{I_{\text {CAs }}(\gamma)}$ is not confluent:

- The orientation of $\equiv_{I_{\text {CAs }}(\gamma)}$ is not confluent:

- Buchberger/Knuth-Bendix's completion procedure applied to $\mathbf{C A s}{ }^{(3)}$ provides:
\triangleright new rewrite rules for arities $5, \cdots, 8$;
- The orientation of $\equiv_{I_{\text {CAs }}(\gamma)}$ is not confluent:

- Buchberger/Knuth-Bendix's completion procedure applied to $\mathbf{C A s}{ }^{(3)}$ provides:
\triangleright new rewrite rules for arities $5, \cdots, 8$;
\triangleright no new rewrite rule for arities $9, \cdots, 14$!
- The orientation of $\equiv_{I_{\text {CAs }}(\gamma)}$ is not confluent:

- Buchberger/Knuth-Bendix's completion procedure applied to $\mathbf{C A s}{ }^{(3)}$ provides:
\triangleright new rewrite rules for arities $5, \cdots, 8$;
\triangleright no new rewrite rule for arities $9, \cdots, 14$!
Theorem [C.-Cordero-Giraudo, 2018]. The operad CAs ${ }^{(3)}$ is presented by a finite Gröbner basis.
- The orientation of $\equiv_{I_{\text {CAs }}(\gamma)}$ is not confluent:

- Buchberger/Knuth-Bendix's completion procedure applied to $\mathbf{C A s}{ }^{(3)}$ provides:
\triangleright new rewrite rules for arities $5, \cdots, 8$;
\triangleright no new rewrite rule for arities $9, \cdots, 14$!
Theorem [C.-Cordero-Giraudo, 2018]. The operad CAs ${ }^{(3)}$ is presented by a finite Gröbner basis. Moreover, we have

$$
\mathcal{H}_{\mathrm{CAs}^{(3)}}=\sum_{n \leq 10} \alpha_{n} t^{n}+\sum_{n \geq 11}(n+3) t^{n}
$$

where,

value of n	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
value of α_{n}	$\mathbf{1}$	2	4	8	14	20	19	16	14

- The orientation of $\equiv_{I_{\text {CAs }}(\gamma)}$ is not confluent:

- Buchberger/Knuth-Bendix's completion procedure applied to $\mathbf{C A s}{ }^{(3)}$ provides:
\triangleright new rewrite rules for arities $5, \cdots, 8$;
\triangleright no new rewrite rule for arities $9, \cdots, 14$!
Theorem [C.-Cordero-Giraudo, 2018]. The operad CAs ${ }^{(3)}$ is presented by a finite Gröbner basis. Moreover, we have

$$
\mathcal{H}_{\mathrm{CAs}^{(3)}}=\sum_{n \leq 10} \alpha_{n} t^{n}+\sum_{n \geq 11}(n+3) t^{n}
$$

where,

value of n	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
value of α_{n}	1	2	4	8	14	20	19	16	14

- We did not find finite Gröbner bases for higher CAs ${ }^{(\gamma)}$'s
- The orientation of $\equiv_{I_{\text {CAs }}(\gamma)}$ is not confluent:

- Buchberger/Knuth-Bendix's completion procedure applied to $\mathbf{C A s}{ }^{(3)}$ provides:
\triangleright new rewrite rules for arities $5, \cdots, 8$;
\triangleright no new rewrite rule for arities $9, \cdots, 14$!
Theorem [C.-Cordero-Giraudo, 2018]. The operad CAs ${ }^{(3)}$ is presented by a finite Gröbner basis. Moreover, we have

$$
\mathcal{H}_{\mathrm{CAs}^{(3)}}=\sum_{n \leq 10} \alpha_{n} t^{n}+\sum_{n \geq 11}(n+3) t^{n}
$$

where,

value of n	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
value of α_{n}	1	2	4	8	14	20	19	16	14

- We did not find finite Gröbner bases for higher CAs ${ }^{(\gamma)}$'s:
\triangleright benchmarks appear in Section 3.3.2 of the article;
- The orientation of $\equiv_{I_{\text {CAs }}(\gamma)}$ is not confluent:

- Buchberger/Knuth-Bendix's completion procedure applied to $\mathbf{C A s}{ }^{(3)}$ provides:
\triangleright new rewrite rules for arities $5, \cdots, 8$;
\triangleright no new rewrite rule for arities $9, \cdots, 14$!
Theorem [C.-Cordero-Giraudo, 2018]. The operad CAs ${ }^{(3)}$ is presented by a finite Gröbner basis. Moreover, we have

$$
\mathcal{H}_{\mathrm{CAs}^{(3)}}=\sum_{n \leq 10} \alpha_{n} t^{n}+\sum_{n \geq 11}(n+3) t^{n}
$$

where,

value of n	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
value of α_{n}	1	2	4	8	14	20	19	16	14

- We did not find finite Gröbner bases for higher CAs ${ }^{(\gamma)}$'s:
\triangleright benchmarks appear in Section 3.3.2 of the article;
\triangleright CAs ${ }^{(4)}$: new rewrite rules still appear at arity 42
- The orientation of $\equiv_{I_{\text {CAs }}(\gamma)}$ is not confluent:

- Buchberger/Knuth-Bendix's completion procedure applied to $\mathbf{C A s}{ }^{(3)}$ provides:
\triangleright new rewrite rules for arities $5, \cdots, 8$;
\triangleright no new rewrite rule for arities $9, \cdots, 14$!
Theorem [C.-Cordero-Giraudo, 2018]. The operad CAs ${ }^{(3)}$ is presented by a finite Gröbner basis. Moreover, we have

$$
\mathcal{H}_{\mathrm{CAs}^{(3)}}=\sum_{n \leq 10} \alpha_{n} t^{n}+\sum_{n \geq 11}(n+3) t^{n}
$$

where,

value of n	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
value of α_{n}	1	2	4	8	14	20	19	16	14

- We did not find finite Gröbner bases for higher CAs ${ }^{(\gamma)}$'s:
\triangleright benchmarks appear in Section 3.3.2 of the article;
\triangleright CAs ${ }^{(4)}$: new rewrite rules still appear at arity 42; at least 3148 new rewrite rules!

Plan

IV. Conclusion and perspectives

- Reference of the article: arXiv:1809.05083.
- Reference of the article: arXiv:1809.05083.
- During the talk:
\triangleright we equipped $\mathcal{Q}(\mathbb{K}$ Mag) with a lattice structure and provide a Grassmann formula analog;
\triangleright we defined the subposet CAs and equipped it with lattice operations;
\triangleright we presented an explicit description of $\mathcal{H}_{\text {CAs }}{ }^{(3)}$ using a finite Gröbner basis.
- Reference of the article: arXiv:1809.05083.
- During the talk:
\triangleright we equipped $\mathcal{Q}(\mathbb{K}$ Mag) with a lattice structure and provide a Grassmann formula analog;
\triangleright we defined the subposet CAs and equipped it with lattice operations;
\triangleright we presented an explicit description of $\mathcal{H}_{\mathbf{C A s}^{(3)}}$ using a finite Gröbner basis.
- In the article, we also:
\triangleright provide benchmarks on completion and Hilbert series of higher CAs operads;
\triangleright compute Hilbert series and combinatorial realizations for most of set-theoretic cubical magmatic quotients.
- Reference of the article: arXiv:1809.05083.
- During the talk:
\triangleright we equipped $\mathcal{Q}(\mathbb{K} \mathbf{M a g})$ with a lattice structure and provide a Grassmann formula analog;
\triangleright we defined the subposet CAs and equipped it with lattice operations;
\triangleright we presented an explicit description of $\mathcal{H}_{\mathrm{CAs}^{(3)}}$ using a finite Gröbner basis.
- In the article, we also:
\triangleright provide benchmarks on completion and Hilbert series of higher CAs operads;
\triangleright compute Hilbert series and combinatorial realizations for most of set-theoretic cubical magmatic quotients.
- Our perspectives:
\triangleright compute Gröbner bases for higher CAs operads (including the use of new generators);
\triangleright use the lattice structures for computing Gröbner bases of magmatic quotients;
\triangleright study the links between quotients of Tamari lattices and the combinatorial/algebraic properties of the associated operad.
- Reference of the article: arXiv:1809.05083.
- During the talk:
\triangleright we equipped $\mathcal{Q}(\mathbb{K} \mathbf{M a g})$ with a lattice structure and provide a Grassmann formula analog;
\triangleright we defined the subposet CAs and equipped it with lattice operations;
\triangleright we presented an explicit description of $\mathcal{H}_{\mathrm{CAs}^{(3)}}$ using a finite Gröbner basis.
- In the article, we also:
\triangleright provide benchmarks on completion and Hilbert series of higher CAs operads;
\triangleright compute Hilbert series and combinatorial realizations for most of set-theoretic cubical magmatic quotients.
- Our perspectives:
\triangleright compute Gröbner bases for higher CAs operads (including the use of new generators);
\triangleright use the lattice structures for computing Gröbner bases of magmatic quotients;
\triangleright study the links between quotients of Tamari lattices and the combinatorial/algebraic properties of the associated operad.

THANK YOU FOR LISTENING!

