# Introduction to linear rewriting: <br> Gröbner bases and reduction operators 

## Cyrille Chenavier

Algebraic rewriting Seminar
February 25, 2021

## I. Motivations

$\triangleright$ Effective algebraic computation
$\triangleright$ Formalisation of algebraic computation

## II. Commutative Gröbner bases

$\triangleright$ Polynomial reduction and Gröbner bases
$\triangleright$ Completion algorithms

## III. Noncommutative Gröbner bases

$\triangleright$ Noncommutative polynomial reduction
$\triangleright$ Anick's resolution and Koszulness
IV. Reduction operators
$\triangleright$ Functional representation of linear rewriting systems
$\triangleright$ Lattice characterisation of confluence and completion

## I. MOTIVATIONS

## Effective algebraic computation

Objective: compute with (non)commutative/Lie/tree polynomials
$\rightarrow$ membership problem, computation of representatives and linear bases
Application scopes: algebraic geometry/combinatorics, homological algebra, formal analysis of functional equations, cryptography


## Formalisation of algebraic computation

Paradigms of rewriting: Gröbner bases and adaptations, linear polygraphs, reduction operators

Algebraic tools for rewriting: monomial orders, critical pairs, higher-dimensional rewriting strategies

Algebraic structures presented by oriented relations

## Some algorithmic problems in algebra

- solve decision problems (e.g., membership problem)
- compute homological invariants (e.g., Tor, Ext groups)
- analysis of functional systems (e.g., integrability conditions)


## Constructive methods

## in algebra

- compute set of representatives for congruence classes
- construct free resolutions of modules
- elimination theory for systems of equations


## Some algorithmic problems in algebra

- solve decision problems (e.g., membership problem)
- compute homological invariants (e.g., Tor, Ext groups)
- analysis of functional systems (e.g., integrability conditions)


## Constructive methods

 in algebra
## Classical

- compute set of representatives for congruence classes
- construct free resolutions of modules
- elimination theory for systems of equations


## ALGEBRAIC REWRITING

Approach: orientation of relations $\rightarrow$ notion of normal form
example: chosen orientation in $\mathbb{K}[x, y] \rightarrow$ induced by $y x \rightarrow x y$

$$
\text { NF computation: } \quad 3 y x x+x y x-x y \rightarrow 4 x y x-x y \rightarrow 4 x x y-x y
$$

Remark on the case $\mathbb{K}[x, y]$ : NF monomials $x^{n} y^{m}$ form a linear basis

## Some algorithmic problems in algebra

- solve decision problems (e.g., membership problem)
- compute homological invariants (e.g., Tor, Ext groups)
- analysis of functional systems (e.g., integrability conditions)


## Constructive methods

 in algebra- compute set of representatives for congruence classes
- construct free resolutions of modules
- elimination theory for systems of equations


## ALGEBRAIC REWRITING

Approach: orientation of relations $\rightarrow$ notion of normal form
example: chosen orientation in $\mathbb{K}[x, y] \rightarrow$ induced by $y x \rightarrow x y$
NF computation: $\quad 3 y x x+x y x-x y \rightarrow 4 x y x-x y \rightarrow 4 x x y-x y$
Remark on the case $\mathbb{K}[x, y]$ : NF monomials $x^{n} y^{m}$ form a linear basis

## Some algorithmic problems in algebra

- solve decision problems (e.g., membership problem)
- compute homological invariants (e.g., Tor, Ext groups)
- analysis of functional systems (e.g., integrability conditions)


## Constructive methods

 in algebra- compute set of representatives for congruence classes
- construct free resolutions of modules
- elimination theory for systems of equations


## ALGEBRAIC REWRITING

Approach: orientation of relations $\rightarrow$ notion of normal form example: chosen orientation in $\mathbb{K}[x, y] \rightarrow$ induced by $y x \rightarrow x y$

$$
\text { NF computation: } \quad 3 y x x+x y x-x y \rightarrow 4 x y x-x y \rightarrow 4 x x y-x y
$$

Remark on the case $\mathbb{K}[x, y]$ : NF monomials $x^{n} y^{m}$ form a linear basis

## Some algorithmic problems in algebra

- solve decision problems (e.g., membership problem)
- compute homological invariants (e.g., Tor, Ext groups)
- analysis of functional systems (e.g., integrability conditions)


## Constructive methods

 in algebra- compute set of representatives for congruence classes
- construct free resolutions of modules
- elimination theory for systems of equations


## ALGEBRAIC REWRITING

Approach: orientation of relations $\rightarrow$ notion of normal form example: chosen orientation in $\mathbb{K}[x, y] \rightarrow$ induced by $y x \rightarrow x y$

$$
\text { NF computation: } \quad 3 y x x+x y x-x y \rightarrow 4 x y x-x y \rightarrow 4 x x y-x y
$$

Remark on the case $\mathbb{K}[x, y]$ : NF monomials $x^{n} y^{m}$ form a linear basis

## Some algorithmic problems in algebra

- solve decision problems (e.g., membership problem)
- compute homological invariants (e.g., Tor, Ext groups)
- analysis of functional systems (e.g., integrability conditions)


## Constructive methods

 in algebra- compute set of representatives for congruence classes
- construct free resolutions of modules
- elimination theory for systems of equations


## ALGEBRAIC REWRITING

Approach: orientation of relations $\rightarrow$ notion of normal form example: chosen orientation in $\mathbb{K}[x, y] \rightarrow$ induced by $y x \rightarrow x y$

$$
\text { NF computation: } \quad 3 y x x+x y x-x y \rightarrow 4 x y x-x y \rightarrow 4 x x y-x y
$$

Remark on the case $\mathbb{K}[x, y]$ : NF monomials $x^{n} y^{m}$ form a linear basis

## Some algorithmic problems in algebra

- solve decision problems (e.g., membership problem)
- compute homological invariants (e.g., Tor, Ext groups)
- analysis of functional systems (e.g., integrability conditions)


## Constructive methods

 in algebra
## Classical

- compute set of representatives for congruence classes
- construct free resolutions of modules
- elimination theory for systems of equations


## ALGEBRAIC REWRITING

Approach: orientation of relations $\rightarrow$ notion of normal form
example: chosen orientation in $\mathbb{K}[x, y] \rightarrow$ induced by $y x \rightarrow x y$

$$
\text { NF computation: } \quad 3 y x x+x y x-x y \rightarrow 4 x y x-x y \rightarrow 4 x x y-x y
$$

Remark on the case $\mathbb{K}[x, y]$ : NF monomials $x^{n} y^{m}$ form a linear basis

## Some algorithmic problems in algebra

- solve decision problems (e.g., membership problem)
- compute homological invariants (e.g., Tor, Ext groups)
- analysis of functional systems (e.g., integrability conditions)


## Constructive methods

 in algebra
## Classical

- compute set of representatives for congruence classes
- construct free resolutions of modules
- elimination theory for systems of equations


## ALGEBRAIC REWRITING

Approach: orientation of relations $\rightarrow$ notion of normal form
example: chosen orientation in $\mathbb{K}[x, y] \rightarrow$ induced by $y x \rightarrow x y$
NF computation: $\quad 3 y x x+x y x-x y \rightarrow 4 x y x-x y \rightarrow 4 x x y-x y$
Remark on the case $\mathbb{K}[x, y]$ : NF monomials $x^{n} y^{m}$ form a linear basis

## Some algorithmic problems in algebra

- solve decision problems (e.g., membership problem)
- compute homological invariants (e.g., Tor, Ext groups)
- analysis of functional systems (e.g., integrability conditions)


## Constructive methods

 in algebra- compute set of representatives for congruence classes
- construct free resolutions of modules
- elimination theory for systems of equations



## Induces (under good hypotheses)

## ALGEBRAIC REWRITING

Approach: orientation of relations $\rightarrow$ notion of normal form
example: chosen orientation in $\mathbb{K}[x, y] \rightarrow$ induced by $y x \rightarrow x y$

$$
\text { NF computation: } \quad 3 y x x+x y x-x y \rightarrow 4 x y x-x y \rightarrow 4 x x y-x y
$$

Remark on the case $\mathbb{K}[x, y]$ : NF monomials $x^{n} y^{m}$ form a linear basis

## Some algorithmic problems in algebra

- solve decision problems (e.g., membership problem)
- compute homological invariants (e.g., Tor, Ext groups)
- analysis of functional systems (e.g., integrability conditions)


## Constructive methods

 in algebra- compute set of representatives for congruence classes
- construct free resolutions of modules
- elimination theory for systems of equations



## Induces (under good hypotheses)

## ALGEBRAIC REWRITING

Approach: orientation of relations $\rightarrow$ notion of normal form
example: chosen orientation in $\mathbb{K}[x, y] \rightarrow$ induced by $y x \rightarrow x y$

$$
\text { NF computation: } \quad 3 y x x+x y x-x y \rightarrow 4 x y x-x y \rightarrow 4 x x y-x y
$$

Remark on the case $\mathbb{K}[x, y]$ : NF monomials $x^{n} y^{m}$ form a linear basis

## MOTIVATING PROBLEM

Given an algebra $\mathbf{A}:=\mathbb{K}\langle X \mid R\rangle$ presented by generators $X$ and relations $R$

$$
\mathbf{A}:=\mathbb{K}\langle X\rangle / I(R) \quad(\text { e.g., } \quad \mathbb{K}[x, y]=\mathbb{K}\langle x, y \mid y x-x y\rangle)
$$

Question: given an orientation of $R(e . g ., y x \rightarrow x y)$
do NF monomials form a linear basis of A?

## MOTIVATING PROBLEM

Given an algebra $\mathbf{A}:=\mathbb{K}\langle X \mid R\rangle$ presented by generators $X$ and relations $R$

$$
\mathbf{A}:=\mathbb{K}\langle X\rangle / I(R) \quad(\text { e.g., } \quad \mathbb{K}[x, y]=\mathbb{K}\langle x, y \mid y x-x y\rangle)
$$

Question: given an orientation of $R(e . g ., y x \rightarrow x y)$
do NF monomials form a linear basis of A?

## MOTIVATING PROBLEM

Given an algebra $\mathbf{A}:=\mathbb{K}\langle X \mid R\rangle$ presented by generators $X$ and relations $R$

$$
\mathbf{A}:=\mathbb{K}\langle X\rangle / I(R) \quad(\text { e.g., } \quad \mathbb{K}[x, y]=\mathbb{K}\langle x, y \mid y x-x y\rangle)
$$

Question: given an orientation of $R(e . g ., y x \rightarrow x y)$
do NF monomials form a linear basis of $A$ ?
do NF monomials form a generating family?
do NF monomials form
a free family?

$$
\begin{aligned}
& \text { NF monomials do not form a generating family } \\
& \quad \mathbf{A}:=\mathbb{K}\langle x \mid x-x x\rangle \quad \text { orientation: } x \rightarrow x x \\
& \rightarrow \\
& \operatorname{dim}_{\mathbb{K}}(\mathbf{A})=2 \quad(\overline{1} \text { and } \bar{x} \text { form a basis }) \\
& \rightarrow \\
& 1 \text { is the only NF monomial } \quad\left(\forall n \geq 1: \quad x^{n} \rightarrow x^{n+1}\right)
\end{aligned}
$$

Definition: $\rightarrow$ is called terminating if
$\nexists$ infinite rewriting sequence
$f_{1} \rightarrow f_{2} \rightarrow \cdots \rightarrow f_{n} \rightarrow f_{n+1} \rightarrow \ldots$

$$
\begin{aligned}
& \text { NF monomials do not form a generating family } \\
& \mathbf{A}:=\mathbb{K}\langle x \mid x-x x\rangle \quad \text { orientation: } x \rightarrow x x \\
\rightarrow & \operatorname{dim}_{\mathbb{K}}(\mathbf{A})=2 \quad(\overline{1} \text { and } \bar{x} \text { form a basis }) \\
\rightarrow & 1 \text { is the only NF monomial } \quad\left(\forall n \geq 1: \quad x^{n} \rightarrow x^{n+1}\right)
\end{aligned}
$$

Definition: $\rightarrow$ is called terminating if
$\nexists$ infinite rewriting sequence
$f_{1} \rightarrow f_{2} \rightarrow \cdots \rightarrow f_{n} \rightarrow f_{n+1} \rightarrow \ldots$

$$
\begin{aligned}
& \text { NF monomials do not form a generating family } \\
& \mathbf{A}:=\mathbb{K}\langle x \mid x-x x\rangle \quad \text { orientation: } x \rightarrow x x \\
\rightarrow & \operatorname{dim}_{\mathbb{K}}(\mathbf{A})=2 \quad(\overline{1} \text { and } \bar{x} \text { form a basis }) \\
\rightarrow & 1 \text { is the only NF monomial } \quad\left(\forall n \geq 1: \quad x^{n} \rightarrow x^{n+1}\right)
\end{aligned}
$$

Definition: $\rightarrow$ is called terminating if
$\nexists$ infinite rewriting sequence
$f_{1} \rightarrow f_{2} \rightarrow \cdots \rightarrow f_{n} \rightarrow f_{n+1} \rightarrow \ldots$

Termination implies:
NF monomials are generators
Prop: let $\mathbf{A}:=\mathbb{K}\langle X \mid R\rangle$. If $\rightarrow$ is a terminating orientation, then
\{NF monomials\} is generating

$$
\begin{aligned}
& \text { NF monomials do not form a generating family } \\
& \quad \mathbf{A}:=\mathbb{K}\langle x \mid x-x x\rangle \quad \text { orientation: } x \rightarrow x x \\
& \rightarrow \\
& \operatorname{dim}_{\mathbb{K}}(\mathbf{A})=2 \quad(\overline{1} \text { and } \bar{x} \text { form a basis }) \\
& \rightarrow \\
& 1 \text { is the only NF monomial } \quad\left(\forall n \geq 1: \quad x^{n} \rightarrow x^{n+1}\right)
\end{aligned}
$$

Definition: $\rightarrow$ is called terminating if
$\nexists$ infinite rewriting sequence
$f_{1} \rightarrow f_{2} \rightarrow \cdots \rightarrow f_{n} \rightarrow f_{n+1} \rightarrow \ldots$

Termination implies:
NF monomials are generators
Prop: let $\mathbf{A}:=\mathbb{K}\langle X \mid R\rangle$. If $\rightarrow$ is a terminating orientation, then
\{NF monomials\} is generating


Definition: $\rightarrow$ is called confluent if



Definition: $\rightarrow$ is called confluent if



Definition: $\rightarrow$ is called confluent if


Confluence implies:
NF monomials form a free family
Prop: let $\mathbf{A}:=\mathbb{K}\langle X \mid R\rangle$. If $\rightarrow$ is a confluent orientation, then
$\{N F$ monomials $\}$ is free


Definition: $\rightarrow$ is called confluent if


Confluence implies:
NF monomials form a free family
Prop: let $\mathbf{A}:=\mathbb{K}\langle X \mid R\rangle$. If $\rightarrow$ is a confluent orientation, then
\{NF monomials $\}$ is free

## Monomial orders

```
Well-founded total orders on \(X^{*}\), product compatible
```



## Monomial orders

Well-founded total orders on $X^{*}$, product compatible

$$
\text { Induces for } \mathbf{A}:=\mathbb{K}\langle X \mid R\rangle
$$

Natural orientation
$\forall f=\operatorname{lc}(f) \operatorname{lm}(f)-\operatorname{rem}(f) \in R$

$\operatorname{lm}(f) \rightarrow_{R} 1 / \operatorname{lc}(f) \operatorname{rem}(f)$$\quad R$ Relationship | Gröbner bases definition |
| :---: |
| $\lim$ called a G.B. of $I=I(R)$ if |
| $\ln (I)=\langle\operatorname{lm}(R)\rangle$ |

Theorem. Let $/$ be a (noncommutative) polynomial ideal, $R$ be a generating set of $I$, and $<$ be a monomial order. Then,

$$
R \text { is a Gröbner basis of } I \quad \Leftrightarrow \quad \rightarrow_{R} \text { is a confluent orientation }
$$

## Objective and plan of the talk

Sections II and III: basics of (noncommutative) Gröbner bases
$\rightarrow$ define Gröbner bases in terms of monomials ideals
$\rightarrow$ show rewriting characterisation of Gröbner bases
$\rightarrow$ present completion algorithms and Anick's resolution

Remark. Gröbner bases have adaptations to many other structures, e.g., Lie algebras, operads, Weyl/Ore algebras, tensor rings

Section IV: introduction to reduction operators
$\rightarrow$ definition of reduction operators for vector spaces
$\rightarrow$ lattice characterisations of confluence and completion

## II. COMMUTATIVE GRÖBNER BASES

## Question: given $I \subseteq \mathbb{K}[X]$ and $g \subseteq \mathbb{K}[X]$

how to compute $f \bmod I$ ?

## USING REWRITING!

Case of one variable: we recover Euclidean division, e.g.,

$$
f:=x^{4}+3 x^{3}+2 x+1 \quad \text { and } \quad g:=x^{2}+1
$$

$f \bmod (g)$ is computed by reducing $f$ into NF w.r.t. $\quad x^{2} \rightarrow-1$

$$
\begin{aligned}
& x^{4}+3 x^{3}+2 x+1 \longrightarrow 3 x^{3}-x^{2}+2 x+1 \longrightarrow-x^{2}-x+1 \longrightarrow-x+2 \\
& \quad \rightarrow f=\left(x^{2}+3 x-1\right) \cdot\left(x^{2}+1\right)-x+2
\end{aligned}
$$

Case of many variables: requires a suitable notion of "leading monomial"
$\rightarrow$ based on monomial orders

Definition: a monomial order (on the set of commutative monomials $[X]$ ) is an order $<$ on $[X]$ s.t.
$<$ is total, well-founded and admissible, i.e.,

$$
\forall m, m_{1}, m_{2} \in[X]: \quad m_{1}<m_{2} \Rightarrow m m_{1}<m m_{2}
$$

## INDUCED NOTIONS

Leading monomial, leading coefficient and remainder
$\forall f \in \mathbb{K}[X] \backslash\{0\}$, we define
$\rightarrow$ the leading monomial $\operatorname{Im}(f)$ of $f$ as being $\max (\operatorname{supp}(f))$
$\rightarrow$ the leading coefficient $\operatorname{lc}(f)$ of $f$ as being the coefficient of $\operatorname{Im}(f)$ in $f$
$\rightarrow$ the remainder of $f$ by rem $(f)=\operatorname{lc}(f) \operatorname{lm}(f)-f$

## Generalisation of Euclidean division

Let $f, g \in \mathbb{K}[X]$ and $G \subseteq \mathbb{K}[X]$
Reducing $f$ w.r.t. $g$ : if $f=\lambda m+f^{\prime}$, with $\quad m=\operatorname{lm}(g) m^{\prime}, m \notin \operatorname{supp}\left(f^{\prime}\right)$ and $\lambda \neq 0$, then, we have: $f \quad \rightarrow_{g} \frac{\lambda}{\operatorname{lc}(f)}\left(m^{\prime} \cdot \operatorname{rem}(g)\right)+f^{\prime}$

Reducing $f$ w.r.t. $G: f \rightarrow_{G} f^{\prime} \quad$ iff $\quad \exists g \in G: \quad f \rightarrow_{g} f^{\prime}$
A NF of $f$ for $\rightarrow_{G}$ is also called a remainder of $f$ w.r.t. $G$

## THE REMAINDER IS NOT UNIQUE IN GENERAL

Example: $G:=\left\{g_{1}, g_{2}\right\}$ with $g_{1}:=x y^{2}+x \quad$ and $\quad g_{2}:=2 y^{3}+x y-1$
$\rightarrow \quad x y^{3}$ has two remainders: $-x y$ and $-x / 2 \cdot(x y-1)$

## Generalisation of Euclidean division

Let $f, g \in \mathbb{K}[X]$ and $G \subseteq \mathbb{K}[X]$
Reducing $f$ w.r.t. $g$ : if $f=\lambda m+f^{\prime}$, with $\quad m=\operatorname{lm}(g) m^{\prime}, m \notin \operatorname{supp}\left(f^{\prime}\right)$ and $\lambda \neq 0$, then, we have: $f \quad \rightarrow_{g} \frac{\lambda}{\operatorname{lc}(f)}\left(m^{\prime} \cdot \operatorname{rem}(g)\right)+f^{\prime}$

Reducing $f$ w.r.t. $G: f \rightarrow_{G} f^{\prime} \quad$ iff $\quad \exists g \in G: \quad f \rightarrow_{g} f^{\prime}$
A NF of $f$ for $\rightarrow G$ is also called a remainder of $f$ w.r.t. $G$

## THE REMAINDER IS NOT UNIQUE IN GENERAL

Example: $G:=\left\{g_{1}, g_{2}\right\}$ with $\quad g_{1}:=x y^{2}+x \quad$ and $\quad g_{2}:=2 y^{3}+x y-1$
$\rightarrow \quad x y^{3}$ has two remainders: $-x y$ and $-x / 2 \cdot(x y-1)$

Definition: let $I \subseteq \mathbb{K}[X]$ and let $<$ be a monomial order on $[X]$. A (commutative) Gröbner basis of $\mathbf{I}$ is a subset $G \subseteq I$ s.t.
$G$ is a generating set of $I$ and $\operatorname{Im}(\mathbf{I})=\langle\mathbf{I m}(\mathbf{G})\rangle$

Definition: let $I \subseteq \mathbb{K}[X]$ and let $<$ be a monomial order on $[X]$. A (commutative) Gröbner basis of $\boldsymbol{I}$ is a subset $G \subseteq I$ s.t. $G$ is a generating set of $I$ and $\operatorname{Im}(\mathbf{I})=\langle\mathbf{I m}(\mathbf{G})\rangle$

Proposition: the following assertions are equivalent
$\rightarrow G$ is a Gröbner basis of $I$
$\rightarrow \forall f \in I, \quad \exists g \in G: \quad \operatorname{Im}(g) \mid \operatorname{Im}(f)$
$\rightarrow$ there is a vector space isomorphism $\mathbb{K}[X] / I \simeq \mathbb{K} \operatorname{NF}(G)$
$\rightarrow$ every $f \in \mathbb{K}[X]$ admits a unique remainder w.r.t. $G$
$\rightarrow$ every $S$-polynomial of $G$ rewrites into 0


$$
\begin{aligned}
& \text { The } S \text {-polynomial of } g, g^{\prime} \in G \text { is } \\
& \frac{\operatorname{Icm}\left(\operatorname{Im}(g), \operatorname{Im}\left(g^{\prime}\right)\right)}{\operatorname{Im}(g)} g-\frac{\operatorname{Icm}\left(\operatorname{Im}(g), \operatorname{Im}\left(g^{\prime}\right)\right)}{\operatorname{Im}\left(g^{\prime}\right)} g^{\prime}
\end{aligned}
$$

Theorem. Let $I$ be a polynomial ideal, $G$ be a generating set of $I$, and $<$ be a monomial order. Then,

$$
G \text { is a Gröbner basis of } I \Leftrightarrow \text { the polynomial reduction is confluent }
$$

## Ideas of the proof

Step 1: $G$ is a G.B. of $I \Leftrightarrow \operatorname{Im}(I) \cap \operatorname{NF}(G)=\emptyset \Leftrightarrow \mathbb{K}[X]=I \oplus \mathbb{K} N F(G)$

Step 2: $\rightarrow_{G}$ is confluent $\Leftrightarrow$ every $f \in \mathbb{K}[X]$ has a unique $N F \Leftrightarrow \mathbb{K}[X]=I \oplus \mathbb{K} N F(G)$

## THE ALGORITHM

Input: a set of monic polynomials $f_{1}, \ldots, f_{r} \in \mathbb{K}[X]$
Output: a G.B. G of $I\left(f_{1}, \ldots, f_{r}\right)$
Init: $G:=\left\{f_{1}, \ldots, f_{r}\right\}$ and $P:=G \times G$
While $P \neq \emptyset$ :
$\rightarrow$ remove $p$ from $P$ and reduce $\operatorname{spol}(p)$ into NF w.r.t. $G$
$\rightarrow$ add $\widehat{\operatorname{spol}(p)}$ to $G$ and add all the corresponding pairs to $P$
Return G

Proof of termination: follows from Dickson's lemma

Proof of correctness: $G \subseteq I$ and every $S$-polynomials rewrites into 0

## EXAMPLE

Input: $G:=\left\{g_{1}, g_{2}\right\}$ with $\quad g_{1}:=x y^{2}+x \quad$ and $\quad g_{2}:=y^{3}+(x y) / 2-1 / 2$ $<$ : the deglex order induced by $y<x$

## While loop:

$\rightarrow \operatorname{spol}\left(g_{1}, g_{2}\right)=-\left(x^{2} y\right) / 2+x y+x / 2 \quad \rightsquigarrow \quad g_{3}:=x^{2} y-2 x y-x \in G$
$\rightarrow \operatorname{spol}\left(g_{1}, g_{3}\right)=2 x y^{2}+x^{2}+x y$ rewrites into $g_{4}:=x^{2}+x y-2 x \in G$
$\rightarrow \operatorname{spol}\left(g_{2}, g_{3}\right)=-\left(x^{3} y\right) / 2+x^{2} / 2-2 x y^{3}-x y^{2}$ rewrites into 0
$\rightarrow \operatorname{spol}\left(g_{1}, g_{4}\right)=x y^{3}-2 x y^{2}-x^{2}$ rewrites into 0
$\rightarrow \operatorname{spol}\left(g_{2}, g_{4}\right)=x y^{4}-\left(x^{3} y\right) / 2-x y^{3}+x^{2} / 2$ rewrites into 0
$\rightarrow \operatorname{spol}\left(g_{3}, g_{4}\right)=x y^{2}+x$ rewrites into 0
Return $\left\{x y^{2}+x, \quad y^{3}+(x y) / 2-1 / 2, \quad x^{2} y-2 x y-x, \quad x^{2}+x y-2 x\right\}$

1st Buchberger's criterion: if $\operatorname{gcd}\left(\operatorname{lm}(g), \operatorname{lm}\left(g^{\prime}\right)\right)=1, \operatorname{spol}\left(g, g^{\prime}\right)$ rewrites into 0
$\rightarrow$ we may restrict the algorithm by computing $S$-pol. with nontrivial gcd

Alternatively: we obtain a linear adaptation of Knuth-Bendix algorithm
$\rightarrow$ with $g_{1}:=x y^{2}+x$ and $g_{2}:=y^{3}+(x y) / 2-1 / 2$, we get
$g_{3}:=x^{2} y-2 x y-x$ and $g_{4}:=x^{2}+x y-2 x$ from



Remark. Gröbner bases may be computed by Gaussian elimination
$\rightarrow$ consider a critical pair $I \leftarrow m \rightarrow r$
$\rightarrow$ reduce $I$ and $r$ into NF and store the reductions into a matrix $M$
$\rightarrow$ compute the row echelon form $\bar{M}$ of $M$ by Gaussian elimination
$\rightarrow$ if some $\operatorname{Im}\left(\bar{M}_{i \bullet}\right)$ does not belong to $\langle\operatorname{lm}(G)\rangle$, then add $\bar{M}_{i \bullet}$ to $G$

Illustration: consider $g_{1}:=x y^{2}+x$ and $g_{2}:=y^{3}+(x y) / 2-1 / 2$


$$
\begin{aligned}
& x y^{3} \quad x^{2} y \quad x y \quad x \\
& \left\lvert\, \begin{array}{cccc|c}
1 & 0 & 1 & 0 & y g_{1} \\
1 & \frac{1}{2} & 0 & -\frac{1}{2} & x g_{2}
\end{array}\right.
\end{aligned}
$$

By Gaussian elimination

Remark. Gröbner bases may be computed by Gaussian elimination
$\rightarrow$ consider a critical pair $I \leftarrow m \rightarrow r$
$\rightarrow$ reduce $I$ and $r$ into NF and store the reductions into a matrix $M$
$\rightarrow$ compute the row echelon form $\bar{M}$ of $M$ by Gaussian elimination
$\rightarrow$ if some $\operatorname{Im}\left(\bar{M}_{i \bullet}\right)$ does not belong to $\langle\operatorname{lm}(G)\rangle$, then add $\bar{M}_{i \bullet}$ to $G$

Illustration: consider $g_{1}:=x y^{2}+x$ and $g_{2}:=y^{3}+(x y) / 2-1 / 2$


$$
\begin{aligned}
& x y^{3} \quad x^{2} y \quad x y \quad x \\
& \left\lvert\, \begin{array}{cccc|c}
1 & 0 & 1 & 0 & y g_{1} \\
1 & \frac{1}{2} & 0 & -\frac{1}{2} & x g_{2}
\end{array}\right.
\end{aligned}
$$

By Gaussian elimination

Remark. Gröbner bases may be computed by Gaussian elimination
$\rightarrow$ consider a critical pair $I \leftarrow m \rightarrow r$
$\rightarrow$ reduce $I$ and $r$ into NF and store the reductions into a matrix $M$
$\rightarrow$ compute the row echelon form $\bar{M}$ of $M$ by Gaussian elimination
$\rightarrow$ if some $\operatorname{Im}\left(\bar{M}_{i \bullet}\right)$ does not belong to $\langle\operatorname{lm}(G)\rangle$, then add $\bar{M}_{i \bullet}$ to $G$

Illustration: consider $g_{1}:=x y^{2}+x \quad$ and $\quad g_{2}:=y^{3}+(x y) / 2-1 / 2$


$$
\left.\begin{aligned}
& x y^{3} \\
& x^{2} y
\end{aligned} \quad x y \quad x \quad \begin{aligned}
& 1 \\
& 1 \\
& 0
\end{aligned} \begin{array}{lll|l}
y g_{1} \\
0 & 1 & -2 & -1
\end{array} \right\rvert\, 2\left(x g_{2}-y g_{1}\right)
$$

By Gaussian elimination we get

$$
\mathbf{g}_{3}:=x^{2} y-2 x y-x
$$

## THE ALGORITHM

Input: a set of monic polynomials $f_{1}, \ldots, f_{r} \in \mathbb{K}[X]$

Output: a G.B. G of $I\left(f_{1}, \ldots, f_{r}\right)$

Init: $G:=\left\{f_{1}, \ldots, f_{r}\right\}$ and $P:=G \times G$

While $P \neq \emptyset$ :
$\rightarrow$ remove from $P$ a selected subset $P^{\prime}$ of $P$
$\rightarrow$ reduce the spol of elements of $P^{\prime}$ into normal form
$\rightarrow$ store all reductions into a matrix $M$
$\rightarrow$ compute the row echelon form $\bar{M}$ of $M$
$\rightarrow$ add to $G$ each $\bar{M}_{i \bullet}$ with leading monomial not in $\langle\operatorname{lm}(G)\rangle$
$\rightarrow$ add the corresponding pairs to $P$

## II. NONCOMMUTATIVE GRÖBNER BASES

# OBJECTIVE: adapt G.B. theory <br> to the noncommutative framework 

One need noncommutative adaptations of

- monomial orders $\rightarrow$ definition of noncommutative G.B.
- polynomial reduction $\rightarrow$ rewriting characterisation of noncommutative G.B.
- S-polynomials $\rightarrow$ noncommutative Buchberger's/F4 procedures

We apply noncommutative G.B. to homological algebra $\rightarrow$ Anick's resolution

Monomial order: total, well-founded order $<$ on noncommutative monomials $\langle X\rangle$, that is admissible i.e.,

$$
\forall m, m^{\prime}, m_{1}, m_{2} \in[X]: \quad m_{1}<m_{2} \Rightarrow m m_{1} m^{\prime}<m m_{2} m^{\prime}
$$

Gröbner bases: a generating subset $G$ of the ideal $I \subseteq \mathbb{K}\langle X\rangle$ s.t. $\quad \operatorname{Im}(I)=\langle\operatorname{lm}(\mathbf{G})\rangle$ (for a fixed monomial order <)

Polynomial reduction: given $G \subseteq \mathbb{K}\langle X\rangle$ and a monomial order <:

$$
\lambda\left(m \operatorname{lm}(g) m^{\prime}\right)+f \quad \rightarrow G \quad \frac{\lambda}{\operatorname{lc}(g)}\left(m \operatorname{rem}(g) m^{\prime}\right)+f
$$

where $\quad g \in G, \quad \lambda \neq 0, \quad m, m^{\prime} \in\langle X\rangle$ and $m \operatorname{lm}(g) m^{\prime} \notin \operatorname{supp}(f)$

Theorem. Let I be a noncommutative polynomial ideal, $G$ be a generating set of $I$, and $<$ be a monomial order. Then,

$$
G \text { is a Gröbner basis of } I \quad \Leftrightarrow \quad \rightarrow_{G} \text { is confluent }
$$

Theorem. Let I be a noncommutative polynomial ideal, $G$ be a generating set of $I$, and $<$ be a monomial order. Then,

```
G is a Gröbner basis of I & 徎 is confluent
```

Remark. If $\mathbf{A}=\mathbb{K}\langle X \mid R\rangle:=\mathbb{K}\langle X\rangle /\langle R\rangle$ is an algebra and $<$ is a monomial order, then $R$ is a Gröbner basis of $\langle R\rangle$ iff $\rightarrow_{R}$ is a confluent orientation of $R$.

In this case, A admits as a basis

$$
\left\{m \bmod \langle R\rangle \mid \quad m \text { is a normal form for } \rightarrow_{R}\right\}
$$

## Two applications of: <br> "Gröbner bases $\leftrightarrow$ confluent orientations"

Ideal membership problem: given a G.B. $G$ of $I$ and $f \in \mathbb{K}\langle X\rangle$, how to decide $f \in I$ ?
$\rightarrow$ reduce $f$ into normal form $\widehat{f}$ using $G$ and test $\widehat{f}=0$
$\rightarrow \widehat{f}$ is independent from the reduction path!

## Two applications of: <br> "Gröbner bases $\leftrightarrow$ confluent orientations"

Ideal membership problem: given a G.B. $G$ of $I$ and $f \in \mathbb{K}\langle X\rangle$, how to decide $f \in I$ ?
$\rightarrow$ reduce $f$ into normal form $\widehat{f}$ using $G$ and test $\widehat{f}=0$
$\rightarrow \widehat{f}$ is independent from the reduction path!

## Two applications of: <br> "Gröbner bases $\leftrightarrow$ confluent orientations"

Ideal membership problem: given a G.B. $G$ of $I$ and $f \in \mathbb{K}\langle X\rangle$, how to decide $f \in I$ ?
$\rightarrow$ reduce $f$ into normal form $\widehat{f}$ using $G$ and test $\widehat{f}=0$
$\rightarrow \widehat{f}$ is independent from the reduction path!

## Two applications of: <br> "Gröbner bases $\leftrightarrow$ confluent orientations"

Ideal membership problem: given a G.B. $G$ of $I$ and $f \in \mathbb{K}\langle X\rangle$, how to decide $f \in I$ ?
$\rightarrow$ reduce $f$ into normal form $\widehat{f}$ using $G$ and test $\widehat{f}=0$
$\rightarrow \widehat{f}$ is independent from the reduction path!

PBW theorem: let $\mathscr{L}$ be a Lie algebra and let $X$ be a totally well-ordered basis of $\mathscr{L}$.
Then, the universal enveloping algebra $U(\mathscr{L})$ of $\mathscr{L}$ admits as a basis

$$
\left\{x_{1}^{\alpha_{1}} \ldots x_{k}^{\alpha_{k}} \mid \quad x_{i}<x_{i+1} \in X, \alpha_{i} \in \mathbb{N}\right\}
$$

## Two applications of:

## "Gröbner bases $\leftrightarrow$ confluent orientations"

Ideal membership problem: given a G.B. G of $I$ and $f \in \mathbb{K}\langle X\rangle$, how to decide $f \in I$ ?
$\rightarrow$ reduce $f$ into normal form $\widehat{f}$ using $G$ and test $\widehat{f}=0$
$\rightarrow \widehat{f}$ is independent from the reduction path!

PBW theorem: let $\mathscr{L}$ be a Lie algebra and let $X$ be a totally well-ordered basis of $\mathscr{L}$.
Then, the universal enveloping algebra $U(\mathscr{L})$ of $\mathscr{L}$ admits as a basis

$$
\left\{x_{1}^{\alpha_{1}} \ldots x_{k}^{\alpha_{k}} \mid \quad x_{i}<x_{i+1} \in X, \alpha_{i} \in \mathbb{N}\right\}
$$

Ideas of the proof:
$\rightarrow$ presentation of $U(\mathscr{L}): \mathbb{K}\langle X \mid y x-x y-[y, x], \quad x \neq y \in X\rangle$
$\rightarrow$ choice of orientation: $y x \rightarrow x y+[y, x]$, where $x<y$
$\rightarrow$ this orientation is confluent (equivalent to Jacobi identity)
$\rightarrow$ a basis of $U(\mathscr{L})$ is composed of NF monomials: $x_{1}^{\alpha_{1}} \ldots x_{k}^{\alpha_{k}} \quad$ s.t. $\quad x_{i}<x_{i+1}$

## S-polynomials

Ambiguities of $G \subseteq \mathbb{K}\langle X\rangle$ : tuples $\mathfrak{a}=\left(w_{1}, w_{2}, w_{3}, g, g^{\prime}\right)$ such that

- $w_{1}, w_{2}, w_{3} \in\langle X\rangle$ with $w_{2} \neq 1 \quad$ and $\quad g, g^{\prime} \in G$
- one of the following two conditions holds

$$
\begin{aligned}
& \rightarrow w_{1} w_{2}=\operatorname{Im}(g) \quad \text { and } \quad w_{2} w_{3}=\operatorname{Im}\left(g^{\prime}\right) \quad \text { (overlapping) } \\
& \rightarrow w_{1} w_{2} w_{3}=\operatorname{Im}(g) \quad \text { and } \quad w_{2}=\operatorname{Im}\left(g^{\prime}\right) \quad \text { (inclusion) }
\end{aligned}
$$

S-polynomials: $\operatorname{spol}(\mathfrak{a})=g w_{3}-w_{1} g^{\prime}$ if $\mathfrak{a}$ is an overlapping $\operatorname{spol}(\mathfrak{a})=w_{1} g w_{3}-g^{\prime}$ if $\mathfrak{a}$ is an inclusion

Proposition: $G$ is a noncommutative G.B. iff every spol rewrites into 0

Completion procedures: adaptations of Buchberger's and $F_{4}$ procedures

## Fix $G \subseteq \mathbb{K}\langle X\rangle$ and a monomial order

Definition: Anick's n-chains and their tails are defined by induction
$\rightarrow$ the unique ( -1 )-chain is 1 , which is its own tail 0 -chains are elements of $X$, which are their own tails
$\rightarrow$ if $n \geq 1$ : a $n$-chain with tail $t$ is a monomial $m t$ such that
i. $m$ is a $(n-1)$-chain with tail $t^{\prime}$
ii. $t$ is a normal form w.r.t. $G$
iii. $t^{\prime} t$ is uniquely reducible, on its right

Example: if $\operatorname{Im}(G)=\{x y x, y x y\}$
0 -chains: $x$ and $y$ 1-chains: $x y x$ and $y x y$ 2-chains: $x y x y$ and $y x y x$
3-chains: $x y x y x y$ and $y x y x y x \quad$ 4-chains: $x y x y x y \times$ and $y x y x y x y$

## Framework:

We fix: $\quad \mathbf{A}=\mathbb{K}\langle X \mid R\rangle \xrightarrow{\varepsilon} \mathbb{K}$ (with $\operatorname{ker}(\varepsilon)=\langle X\rangle$ ) and a monomial order $<$ Assumption: $\quad R$ is a reduced noncommutative Gröbner basis of $\langle R\rangle$

## Construction of Anick's resolution: main steps

$\rightarrow$ consider the free (left $\mathbf{A}-$ )modules $\mathbf{A}\left\langle\mathcal{C}_{n}\right\rangle$ generated by $n$-chains

$$
\left(\mathbf{A}\left\langle\mathcal{C}_{-1}\right\rangle \simeq \mathbf{A}, \quad \mathbf{A}\left\langle\mathcal{C}_{0}\right\rangle=\mathbf{A}\langle X\rangle, \quad \mathbf{A}\left\langle\mathcal{C}_{1}\right\rangle \simeq \mathbf{A}\langle R\rangle\right)
$$

$\rightarrow$ boundaries $\partial_{n}$ are constructed simultaneously with the contracting homotopy $\iota_{n}$ they satisfy the identities: $\quad \partial_{n} \circ \partial_{n+1}=0 \quad$ and $\quad \partial_{n+1} \circ \iota_{n}=\operatorname{id}_{\operatorname{ker}\left(\partial_{n}\right)}$

Required relations: $\quad \partial_{n} \circ \partial_{n+1}=0 \quad$ and $\quad \partial_{n+1} \circ \iota_{n}=\operatorname{id}_{\operatorname{ker}\left(\partial_{n}\right)}$

$\partial_{0}$ and $\iota_{-1}: \quad \partial_{0}([x]):=\bar{x} \quad$ and $\quad \iota_{-1}(\overline{m x}):=\bar{m} \cdot[x] \quad(m x \in N F)$

$$
\rightarrow \quad \operatorname{ker}(\varepsilon)=\operatorname{im}\left(\partial_{0}\right) \quad \text { and } \quad \partial_{0} \circ \iota_{-1}=\operatorname{id}_{\operatorname{ker}(\varepsilon)}
$$

$\partial_{1}$ and $\iota_{0}: \quad \partial_{1}([\operatorname{lm}(g)]):=\bar{m} \cdot[x]-\sum \lambda_{i} \overline{m_{i}} \cdot\left[x_{i}\right] \quad$ where $\quad g=m x-\sum \lambda_{i} m_{i} x_{i}$
$\rightarrow \quad \partial_{0} \circ \partial_{1}=0 \quad$ since $\quad \partial_{1}[\operatorname{lm}(g)]=\bar{m} \cdot[x]-\iota_{-1} \circ \partial_{0}(\bar{m} \cdot[x])$
$\forall h \in \operatorname{ker}\left(\partial_{0}\right)$ with leading term $\bar{m} \cdot[x]$, there is a factorisation $m x=m^{\prime} \operatorname{lm}(g)$

$$
\iota_{0}(h):=\overline{m^{\prime}} \cdot[\operatorname{lm}(g)]+\iota_{0}\left(\left(h-\partial_{1}\left(\overline{m^{\prime}} \cdot[\operatorname{lm}(g)]\right)\right)\right.
$$

$\rightarrow \quad \partial_{1} \circ \iota_{0}=\mathrm{id}_{\operatorname{ker}\left(\partial_{0}\right)} \quad$ is proven by induction

Required relations: $\quad \partial_{n} \circ \partial_{n+1}=0 \quad$ and $\quad \partial_{n+1} \circ \iota_{n}=\operatorname{id}_{\operatorname{ker}\left(\partial_{n}\right)}$

$\partial_{0}$ and $\iota_{-1}: \quad \partial_{0}([x]):=\bar{x} \quad$ and $\quad \iota_{-1}(\overline{m x}):=\bar{m} \cdot[x] \quad(m x \in N F)$

$$
\rightarrow \quad \operatorname{ker}(\varepsilon)=\operatorname{im}\left(\partial_{0}\right) \quad \text { and } \quad \partial_{0} \circ \iota_{-1}=\operatorname{id}_{\operatorname{ker}(\varepsilon)}
$$

$\partial_{1}$ and $\iota_{0}: \quad \partial_{1}([\operatorname{lm}(g)]):=\bar{m} \cdot[x]-\sum \lambda_{i} \overline{m_{i}} \cdot\left[x_{i}\right] \quad$ where $\quad g=m x-\sum \lambda_{i} m_{i} x_{i}$
$\rightarrow \quad \partial_{0} \circ \partial_{1}=0 \quad$ since $\quad \partial_{1}[\operatorname{lm}(g)]=\bar{m} \cdot[x]-\iota_{-1} \circ \partial_{0}(\bar{m} \cdot[x])$
$\forall h \in \operatorname{ker}\left(\partial_{0}\right)$ with leading term $\bar{m} \cdot[x]$, there is a factorisation $m x=m^{\prime} \operatorname{lm}(g)$

$$
\iota_{0}(h):=\overline{m^{\prime}} \cdot[\operatorname{lm}(g)]+\iota_{0}\left(\left(h-\partial_{1}\left(\overline{m^{\prime}} \cdot[\operatorname{lm}(g)]\right)\right)\right.
$$

$\rightarrow \quad \partial_{1} \circ \iota_{0}=\mathrm{id}_{\operatorname{ker}\left(\partial_{0}\right)} \quad$ is proven by induction

Required relations: $\quad \partial_{n} \circ \partial_{n+1}=0 \quad$ and $\quad \partial_{n+1} \circ \iota_{n}=\operatorname{id}_{\operatorname{ker}\left(\partial_{n}\right)}$

$\mathbf{A}\left\langle\mathcal{C}_{n+1}\right\rangle \xrightarrow{\partial_{n+1}} \mathbf{A}\left\langle\mathcal{C}_{n}\right\rangle: \quad \partial_{n+1}([m \mid t]):=\bar{m} \cdot[t]-\iota_{n-1} \circ \partial_{n}(\bar{m} .[t])$
$\rightarrow \quad \partial_{n} \circ \partial_{n+1}=0 \quad$ (using the induction hypothesis $\partial_{n} \circ \iota_{n-1}=0$ )
$\mathbf{A}\left\langle\mathcal{C}_{n}\right\rangle \xrightarrow{\iota_{n}} \mathbf{A}\left\langle\mathcal{C}_{n+1}\right\rangle: \quad \forall h \in \operatorname{ker}\left(\partial_{n}\right)$ with leading term $\bar{m} .[c], m c=m^{\prime} c^{\prime}$, with $c^{\prime} \in \mathcal{C}_{n+1}$

$$
\iota_{n}(h):=\overline{m^{\prime}} \cdot\left[c^{\prime}\right]+\iota_{0}\left(\left(c-\partial_{1}\left(\overline{m^{\prime}} \cdot\left[c^{\prime}\right]\right)\right)\right.
$$

$\rightarrow \quad \partial_{n+1} \circ \iota_{n}=\operatorname{id}_{\operatorname{ker}\left(\partial_{n}\right)} \quad$ is proven by induction

## Using the Anick'resolution, we can prove:

$\rightarrow$ if $\mathbf{A}=\mathbb{K}\langle X \mid R\rangle$ is a monomial algebra, i.e. $R \subseteq\langle X\rangle$, then

$$
\operatorname{Tor}^{\mathrm{A}}(\mathbb{K}, \mathbb{K})=\bigoplus_{n} \mathbb{K} \mathcal{C}_{n}
$$

$\rightarrow$ if $\mathbf{A}$ is presented by a quadratic Gröbner basis, then it is Koszul
$\rightarrow$ if $\mathbf{A}$ is presented by an N -homogeneous Gröbner basis and satisfies the extra-condition, then it is $N$-Koszul

## IV. REDUCTION OPERATORS

## A brief overview on reduction operators

Bergman, 1978: formalism for rewriting noncommutative polynomials

Berger 1998, 2001: lattice characterisation of homogeneous G.B. applied to Koszul duality
C. 2016, 2018: lattice characterisations of confluence and completion with the following applications
$\rightarrow$ constructive proof of Koszulness
$\rightarrow$ lattice formulation of the noncommutative $F_{4}$ completion procedure
$\rightarrow$ computation of syzygies and detection of useless critical pairs

## Functional representation of rewriting strategies

Example: $y y \rightarrow y x \quad \rightsquigarrow \quad$ left/right reduction operators on 3 letter words


Properties of L and R : they are linear projectors of $\mathbb{K} X^{(3)}$ (or $\mathbb{K}\langle X\rangle$ ) and compatible with the deglex order induced by $x<y$

## Functional representation of rewriting strategies

Example: $y y \rightarrow y x \quad \rightsquigarrow \quad$ left/right reduction operators on 3 letter words


Properties of L and $\mathbb{R}$ : they are linear projectors of $\mathbb{K} X^{(3)}$ (or $\mathbb{K}\langle X\rangle$ ) and compatible with the deglex order induced by $x<y$

## Functional representation of rewriting strategies

Example: $y y \rightarrow y x \quad \rightsquigarrow \quad$ left/right reduction operators on 3 letter words


Properties of L and R : they are linear projectors of $\mathbb{K} X^{(3)}$ (or $\mathbb{K}\langle X\rangle$ ) and compatible with the deglex order induced by $x<y$

Definition: a reduction operator on a vector space $V$ equipped with a well-ordered basis $(G,<)$ is a linear projector of $V$ s.t.

$$
\forall g \in G: \quad T(g)=g \quad \text { or } \quad \operatorname{Im}(T(g))<g
$$

Remark. Finite dimensional restrictions of R.O. admit matrix representations, e.g.,


The matrix representations of $L$ and $R$ are

$$
\mathrm{L}=\begin{array}{cccc}
y x x & y x y & y y x & y y y \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\left|\quad \mathrm{R}=\left|\begin{array}{ccc}
y x x & y x y & y y x \\
1 & 0 & 0 \\
1 \\
0 & y y y \\
0 & 0 & 0 \\
0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right|\right.
$$

Proposition: the kernel map induces a bijection between R.O. and subspaces ker : $\quad\{$ reduction operators on $V\} \leftrightarrow\{$ subspaces of $V\}$

In particular, reduction operators admit the following lattice operations
$\rightarrow T_{1} \preceq T_{2} \quad$ iff $\quad \operatorname{ker}\left(T_{2}\right) \subseteq \operatorname{ker}\left(T_{1}\right)$
$\rightarrow T_{1} \wedge T_{2}$ is the reduction operator with kernel $\operatorname{ker}\left(T_{1}\right)+\operatorname{ker}\left(T_{2}\right)$
$\rightarrow T_{1} \vee T_{2}$ is the reduction operator with kernel $\operatorname{ker}\left(T_{1}\right) \cap \operatorname{ker}\left(T_{2}\right)$

Moreover, $T_{1} \wedge T_{2}$ computes minimal normal forms


Proposition: the kernel map induces a bijection between R.O. and subspaces ker: $\quad\{$ reduction operators on $V\} \leftrightarrow\{$ subspaces of $V\}$

In particular, reduction operators admit the following lattice operations
$\rightarrow T_{1} \preceq T_{2} \quad$ iff $\quad \operatorname{ker}\left(T_{2}\right) \subseteq \operatorname{ker}\left(T_{1}\right)$
$\rightarrow T_{1} \wedge T_{2}$ is the reduction operator with kernel $\operatorname{ker}\left(T_{1}\right)+\operatorname{ker}\left(T_{2}\right)$
$\rightarrow T_{1} \vee T_{2}$ is the reduction operator with kernel $\operatorname{ker}\left(T_{1}\right) \cap \operatorname{ker}\left(T_{2}\right)$

Moreover, $T_{1} \wedge T_{2}$ computes minimal normal forms


## Computing lower bound using Gaussian elimination

Example: consider

$$
\begin{aligned}
\mathrm{L} & =\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad \mathrm{R}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right) \\
\operatorname{ker}(\mathrm{L} \wedge \mathrm{R}) & =\operatorname{ker}(\mathrm{L})+\operatorname{ker}(\mathrm{R})=\mathbb{K}\{y y x-y x x, y y y-y x y, y y y-y y x\} \\
& =\mathbb{K}\{y x y-y x x, \quad y y x-y x x, \quad y y y-y x x\}
\end{aligned}
$$

Hence

$$
L \wedge R=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Lemma/Definition. For a familly $F$ of R.O., we have

$$
\operatorname{im}(\wedge F) \subseteq \bigcap_{T \in F} \operatorname{im}(T) \quad \rightsquigarrow \quad \bigcap_{T \in F} \operatorname{im}(T)=\operatorname{im}(\wedge F) \oplus \mathbb{K} \operatorname{obs}(F)
$$

## Illustration. Consider

$$
\operatorname{im}(\mathrm{L}) \cap \operatorname{im}(\mathrm{R})=\operatorname{im}(\mathrm{L} \wedge \mathrm{R}) \oplus \mathbb{K}\{y x y\} \quad \rightarrow \quad o b s(\mathrm{~L}, \mathrm{R})=\mathbb{K}\{y x y\}
$$

Lemma/Definition. For a familly $F$ of R.O., we have

$$
\operatorname{im}(\wedge F) \subseteq \bigcap_{T \in F} \operatorname{im}(T) \quad \rightsquigarrow \quad \bigcap_{T \in F} \operatorname{im}(T)=\operatorname{im}(\wedge F) \oplus \mathbb{K} \operatorname{obs}(F)
$$

Illustration. Consider


$$
\operatorname{im}(\mathrm{L}) \cap \operatorname{im}(\mathrm{R})=\operatorname{im}(\mathrm{L} \wedge \mathrm{R}) \oplus \mathbb{K}\{y x y\} \quad \rightarrow \quad \operatorname{obs}(\mathrm{L}, \mathrm{R})=\mathbb{K}\{y x y\}
$$

Remark. (L,R) is completed by the operator mapping any obstruction to its image by the lower bound

Theorem. Let $F$ be a family of reduction operators and $\rightarrow_{F}$ be the induced rewriting relation on $V$. Then, $\rightarrow_{F}$ is confluent if and only if

$$
\operatorname{im}(\wedge F)=\bigcap_{T \in F} \operatorname{im}(T)
$$

Moreover, if $\rightarrow_{F}$ is not confluent, then $F$ is completed by

$$
C(F):=\wedge F \vee(\vee \bar{F})
$$

where

$$
\vee \bar{F}:=\operatorname{ker}^{-1}\left(\bigcap_{T \in F} \operatorname{im}(T)\right)
$$

