A geometric stabilization of planar switched systems

Cyrille Chenavier ${ }^{1} \quad$ Rosane Ushirobira ${ }^{2} \quad$ Giorgio Valmorbida ${ }^{3}$
${ }^{1}$ Johannes Kepler Universität, Austria $\quad{ }^{2}$ Inria, France
${ }^{3}$ Centrale Supelec, France

21st IFAC World Congress
Germany, July 11-17, 2020

Continuous-time switched linear systems

A (continuous-time) switched linear system is given by

$$
\dot{x}(t)=A_{\sigma(t)} x(t), \quad t \in \mathbb{R}_{\geq 0}, \quad x(0) \in \mathbb{R}^{n}
$$

where

- $x: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}^{n}$ represents the state variable, $x(0)$ is the initial state
- $A_{1}, \cdots, A_{p} \in \mathbb{R}^{n \times n}$ are subsystems
- $\sigma: \mathbb{R}_{\geq 0} \rightarrow\left\{A_{1}, \cdots, A_{p}\right\}$ is the switching signal

Problem

Construct a stabilizing signal:
\rightarrow the corresponding trajectory converges to 0 with exponential decay

Existing stability/stabilization analysis methods

- Traces and determinants (Balde and al.)
- Joint spectral radius (Blondel)
- Lie algebraic conditions (Liberzon, Gurvitz)
- Set theoretic approach (Megretski, Kruszewski, Guerra)
- Stability analysis under restricted switching (Lin-Antsalkis)

A CANDIDATE FOR STABILIZATION

Assumptions: 2 modes and 2 states \rightarrow fix $A_{1}, A_{2} \in \mathbb{R}^{2 \times 2}$
The candidate: $\sigma: \mathbb{R}_{\geq 0} \rightarrow\left\{\mathbf{A}_{1}, \mathbf{A}_{2}\right\}$ defined by

- choose two lines \mathscr{D}_{1} and \mathscr{D}_{2} and label adjacent regions by \mathscr{O}_{1} and \mathscr{O}_{2}
- define $\sigma(t)=\mathbf{A}_{\mathbf{i}}$ if $x(t) \in \mathscr{O}_{i}$ and $\sigma(t)=\mathbf{A}_{1}$ or \mathbf{A}_{2} if $x(t) \in \mathscr{D}_{1} \cup \mathscr{D}_{2}$

Sliding motions

Let \mathscr{D} be a line in \mathbb{R}^{2}, let $p \in \mathscr{D}$ and let \vec{n} be a unit vector normal to \mathscr{D} at p
Definition 1: We say that no sliding motion occurs at p if $\left(\mathrm{A}_{1} \vec{n}\right)^{T}\left(\mathrm{~A}_{2} \vec{n}\right)>0$ (equivalently: \mathbf{A}_{1} and \mathbf{A}_{2} point in the same half-plane at p)

Definition 2: \mathscr{D} induces no sliding motion for $\left(A_{1}, A_{2}\right)$ if no sliding motion occurs at any point

Our contributions

Let $\sigma: \mathbb{R}_{\geq+} \rightarrow\left\{\mathbf{A}_{1}, \mathbf{A}_{2}\right\}$ be a switching candidate induced by \mathscr{D}_{1} and \mathscr{D}_{2}
Question: if \mathscr{D}_{1} and \mathscr{D}_{2} induce no sliding motion for $\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right)$, is σ stabilizing?
Our results: 2 sufficient conditions based on Lyapunov functions design
\rightarrow we present the first condition and sketch the second one

Algebraic reformulation of the problem

\rightarrow choose an orientation vector \vec{v}_{i} of \mathscr{D}_{i} and define $\mathrm{R} \in \mathbb{R}^{2 \times 2}$ by $\vec{v}_{i}{ }^{\top} \mathrm{R} \vec{v}_{i}=0$ (without restriction, R is assumed to be symmetric with determinant <0)
\rightarrow the region $\mathscr{O}_{1}\left(\right.$ resp., $\left.\mathscr{O}_{2}\right)$ are points $x \in \mathbb{R}^{2}$ s.t. $x^{T} \mathbb{R} x>0$ (resp., $x^{T} \mathrm{R} x<0$)

Theorem

Let $A_{1}, A_{2} \in \mathbb{R}^{2 \times 2}$, let \mathbf{R} be a symmetric matrix with negative determinant, let $\vec{v}_{1}, \vec{v}_{2} \in \mathbb{R}^{2}$ such that $\vec{v}_{i}^{\top} R \vec{v}_{i}=0$ and assume that \mathscr{D}_{1} and \mathscr{D}_{2} induce no sliding motion. If the following LMIs problem admits a solution:

$$
\exists \tau_{1}, \tau_{2} \geq 0 \text { and } P_{1}=P_{1}^{T}, P_{2}=P_{2}^{T} \text { s.t. }
$$

(1): $P_{1}-\mathrm{R}>0, \quad P_{2}+\mathrm{R}>0$
(2): $-\left(\mathbf{A}_{1}^{T} P_{1}+P_{1} \mathbf{A}_{1}\right)-\tau_{1} \mathbf{R}>0, \quad-\left(\mathbf{A}_{2}^{T} P_{2}+P_{2} \mathbf{A}_{2}\right)+\tau_{2} \mathbf{R}>0$
(3): $\vec{v}_{1}^{T}\left(P_{1}-P_{2}\right) \vec{v}_{1}=0, \quad \vec{v}_{2}^{T}\left(P_{1}-P_{2}\right) \vec{v}_{2}=0$
then, $\sigma: \mathbb{R}_{\geq 0} \rightarrow\left\{\mathbf{A}_{1}, \mathbf{A}_{2}\right\}$ defined by $\sigma(t)=\mathbf{A}_{1}\left(\right.$ resp., $\left.\mathbf{A}_{2}\right)$ if $x^{\top} \mathbf{R} x>0($ resp., $<0)$ is a stabilizing signal.

Ideas of the proof : $V: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by $V(x)=x^{\top} P_{i} x$ if $x \in \mathscr{O}_{i}$ is

- well-defined (from (3))
- positive and strictly decreasing along trajectories (from (1) and (2))

A numerical example

From Lin-Antsalkis consider the following two modes

$$
A_{1}=\left(\begin{array}{cc}
0 & 10 \\
0 & 0
\end{array}\right) \quad A_{2}=\left(\begin{array}{cc}
1.5 & 2 \\
-2 & -0.5
\end{array}\right)
$$

and the stabilizing switching induced by \mathscr{D}_{1} and \mathscr{D}_{2} with orientation vectors

$$
\vec{v}_{1}=\left(\begin{array}{ll}
1 & 0.3
\end{array}\right) \quad \vec{v}_{2}=\left(\begin{array}{ll}
1 & 0.11
\end{array}\right)
$$

The corresponding matrix is

$$
\mathrm{R}=\left(\begin{array}{cc}
-0.033 & -0.095 \\
-0.095 & 1
\end{array}\right)
$$

and the LMIs problem has the following solution
$\tau_{1}=1.8890, \quad \tau_{2}=1.3550, \quad P_{1}=\left(\begin{array}{cc}0.0229 & -0.1376 \\ -0.1376 & 3.9156\end{array}\right), \quad P_{2}=\left(\begin{array}{cc}0.1424 & 0.2065 \\ 0.2065 & 0.2940\end{array}\right)$

Figure: trajectories converging to the origin are depicted in solid black lines and level sets of the Lyapunov function (dashed red curves) form "contracting parallelograms"

Geometric reformulation of the problem

A set \mathscr{P} of parallelogram is said to be contracting for $\left(\mathscr{D}_{1}, \mathscr{D}_{2}\right)$ if

- the sides of each parallelogram in \mathscr{P} are oriented by the same vectors \mathbf{L}_{1} and $\mathbf{L}_{\mathbf{2}}$
- \mathscr{D}_{1} and \mathscr{D}_{2} are the diagonals of each parallelogram in \mathscr{P}
- trajectories are decreasing along sides of parallelograms in \mathscr{P}

Theorem

Assume that \mathscr{D}_{1} and \mathscr{D}_{2} induce no sliding motions and that a contracting set of parallelograms exists. The switching signal defined by \mathscr{D}_{1} and \mathscr{D}_{2} is stabilizing.

Conclusion and perspectives

- We provided two methods for checking stabilization of planar switched systems induced by lines passing through the origin
- Our methods are based on an algebraic reformulation of the problem and constructions of Lyapunov functions
- Further works include: construction of stabilizing signal, robustness, allow sliding motions

THANK YOU FOR LISTENING!

