A geometric stabilization of planar switched systems

Cyrille Chenavier1Rosane Ushirobira2Giorgio Valmorbida3¹Johannes Kepler Universität, Austria²Inria, France³Centrale Supelec, France

21st IFAC World Congress

Germany, July 11-17, 2020

Continuous-time switched linear systems

A (continuous-time) switched linear system is given by

$$\dot{x}(t) = A_{\sigma(t)}x(t), \qquad t \in \mathbb{R}_{\geq 0}, \quad x(0) \in \mathbb{R}^n$$

where

- $x: \mathbb{R}_{\geq 0} \to \mathbb{R}^n$ represents the state variable, x(0) is the initial state
- $A_1, \cdots, A_p \in \mathbb{R}^{n \times n}$ are subsystems
- $\sigma : \mathbb{R}_{\geq 0} \rightarrow \{A_1, \cdots, A_p\}$ is the switching signal

Problem

Construct a stabilizing signal:

 \rightarrow the corresponding trajectory converges to 0 with exponential decay

Existing stability/stabilization analysis methods

- Traces and determinants (Balde and al.)
- Joint spectral radius (Blondel)
- Lie algebraic conditions (Liberzon, Gurvitz)
- Set theoretic approach (Megretski, Kruszewski, Guerra)
- Stability analysis under restricted switching (Lin-Antsalkis)

A CANDIDATE FOR STABILIZATION

Assumptions: 2 modes and 2 states \rightarrow fix A_1 , $A_2 \in \mathbb{R}^{2 \times 2}$

The candidate: $\sigma : \mathbb{R}_{\geq 0} \rightarrow \{A_1, A_2\}$ defined by

- choose two lines \mathscr{D}_1 and \mathscr{D}_2 and label adjacent regions by \mathscr{O}_1 and \mathscr{O}_2
- define $\sigma(t) = A_i$ if $x(t) \in \mathcal{O}_i$ and $\sigma(t) = A_1$ or A_2 if $x(t) \in \mathcal{D}_1 \cup \mathcal{D}_2$

C.Chenavier, R.Ushirobira, G.Valmorbida

Sliding motions

Let \mathscr{D} be a line in \mathbb{R}^2 , let $p \in \mathscr{D}$ and let \vec{n} be a unit vector normal to \mathscr{D} at p

Definition 1: We say that no sliding motion occurs at p if $(\mathbf{A}_1 \vec{n})^T (\mathbf{A}_2 \vec{n}) > 0$

(equivalently: A_1 and A_2 point in the same half-plane at p)

Definition 2: \mathscr{D} induces no sliding motion for (A_1, A_2) if no sliding motion occurs at any point

Our contributions

Let $\sigma : \mathbb{R}_{\geq +} \to \{A_1, A_2\}$ be a switching candidate induced by \mathscr{D}_1 and \mathscr{D}_2 Question: if \mathscr{D}_1 and \mathscr{D}_2 induce no sliding motion for (A_1, A_2) , is σ stabilizing? Our results: 2 sufficient conditions based on Lyapunov functions design

 \rightarrow we present the first condition and sketch the second one

21st IFAC World Congress

Algebraic reformulation of the problem

- → choose an orientation vector \vec{v}_i of \mathscr{D}_i and define $\mathbf{R} \in \mathbb{R}^{2 \times 2}$ by $\vec{v}_i^T \mathbf{R} \vec{v}_i = 0$ (without restriction, **R** is assumed to be symmetric with determinant < 0)
- → the region \mathcal{O}_1 (resp., \mathcal{O}_2) are points $x \in \mathbb{R}^2$ s.t. $x^T \mathbf{R} x > 0$ (resp., $x^T \mathbf{R} x < 0$)

C.Chenavier, R.Ushirobira, G.Valmorbida

21st IFAC World Congress

Theorem

Let $\mathbf{A}_1, \mathbf{A}_2 \in \mathbb{R}^{2 \times 2}$, let \mathbf{R} be a symmetric matrix with negative determinant, let $\vec{v}_1, \vec{v}_2 \in \mathbb{R}^2$ such that $\vec{v}_i^T \mathbf{R} \vec{v}_i = 0$ and assume that \mathscr{D}_1 and \mathscr{D}_2 induce no sliding motion. If the following LMIs problem admits a solution:

$$\exists \tau_1, \tau_2 \ge 0 \text{ and } P_1 = P_1^T, P_2 = P_2^T \text{ s.t.}$$
(1): $P_1 - \mathbb{R} > 0, \quad P_2 + \mathbb{R} > 0$
(2): $-(\mathbb{A}_1^T P_1 + P_1 \mathbb{A}_1) - \tau_1 \mathbb{R} > 0, \quad -(\mathbb{A}_2^T P_2 + P_2 \mathbb{A}_2) + \tau_2 \mathbb{R} > 0$
(3): $\vec{v}_1^T (P_1 - P_2) \vec{v}_1 = 0, \quad \vec{v}_2^T (P_1 - P_2) \vec{v}_2 = 0$
then, $\sigma : \mathbb{R}_{\ge 0} \to \{\mathbb{A}_1, \mathbb{A}_2\}$ defined by $\sigma(t) = \mathbb{A}_1$ (resp., \mathbb{A}_2) if $x^T \mathbb{R} x > 0$ (resp., < 0 is a stabilizing signal.

Ideas of the proof : $V : \mathbb{R}^2 \to \mathbb{R}$ defined by $V(x) = x^T P_i x$ if $x \in \mathcal{O}_i$ is

- well-defined (from (3))
- positive and strictly decreasing along trajectories (from (1) and (2))

21st IFAC World Congress

A numerical example

From Lin-Antsalkis consider the following two modes

$$\mathbf{A}_{1} = \begin{pmatrix} 0 & 10 \\ 0 & 0 \end{pmatrix} \qquad \mathbf{A}_{2} = \begin{pmatrix} 1.5 & 2 \\ -2 & -0.5 \end{pmatrix}$$

and the stabilizing switching induced by \mathscr{D}_1 and \mathscr{D}_2 with orientation vectors

$$ec{v}_1=egin{pmatrix}1&0.3\end{pmatrix}$$
 $ec{v}_2=egin{pmatrix}1&0.11\end{pmatrix}$

The corresponding matrix is

$$\mathbf{R} = \begin{pmatrix} -0.033 & -0.095 \\ -0.095 & 1 \end{pmatrix}$$

and the LMIs problem has the following solution

$$au_1 = 1.8890, \quad au_2 = 1.3550, \quad P_1 = \begin{pmatrix} 0.0229 & -0.1376 \\ -0.1376 & 3.9156 \end{pmatrix}, \quad P_2 = \begin{pmatrix} 0.1424 & 0.2065 \\ 0.2065 & 0.2940 \end{pmatrix}$$

Figure: trajectories converging to the origin are depicted in solid black lines and level sets of the Lyapunov function (dashed red curves) form "contracting parallelograms"

Geometric reformulation of the problem

A set \mathscr{P} of parallelogram is said to be contracting for $(\mathscr{D}_1, \mathscr{D}_2)$ if

- \bullet the sides of each parallelogram in ${\mathscr P}$ are oriented by the same vectors ${\sf L}_1$ and ${\sf L}_2$
- \mathscr{D}_1 and \mathscr{D}_2 are the diagonals of each parallelogram in \mathscr{P}
- trajectories are decreasing along sides of parallelograms in ${\mathscr P}$

Theorem

Assume that \mathscr{D}_1 and \mathscr{D}_2 induce no sliding motions and that a contracting set of parallelograms exists. The switching signal defined by \mathscr{D}_1 and \mathscr{D}_2 is stabilizing.

C.Chenavier, R.Ushirobira, G.Valmorbida

21st IFAC World Congress

July 11-17, 2020 10 / 11

Conclusion and perspectives

- We provided two methods for checking stabilization of planar switched systems induced by lines passing through the origin
- Our methods are based on an algebraic reformulation of the problem and constructions of Lyapunov functions
- Further works include: construction of stabilizing signal, robustness, allow sliding motions

THANK YOU FOR LISTENING!