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Continuous-time switched linear systems

A (continuous-time) switched linear system is given by

ẋ(t) = Aσ(t)x(t), t ∈ R≥0, x(0) ∈ Rn

where
• x : R≥0 → Rn represents the state variable, x(0) is the initial state

• A1, · · · ,Ap ∈ Rn×n are subsystems

• σ : R≥0 → {A1, · · · ,Ap} is the switching signal

Problem

Construct a stabilizing signal:

Ô the corresponding trajectory converges to 0 with exponential decay
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Existing stability/stabilization analysis methods

• Traces and determinants (Balde and al.)

• Joint spectral radius (Blondel)

• Lie algebraic conditions (Liberzon, Gurvitz)

• Set theoretic approach (Megretski, Kruszewski, Guerra)

• Stability analysis under restricted switching (Lin-Antsalkis)
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D1
D2

A CANDIDATE FOR STABILIZATION

Assumptions: 2 modes and 2 states → fix A1, A2 ∈ R2×2

The candidate: σ : R≥0 → {A1,A2} defined by
• choose two lines D1 and D2 and label adjacent regions by O1 and O2

• define σ(t) = Ai if x(t) ∈ Oi and σ(t) = A1 or A2 if x(t) ∈ D1 ∪ D2

O1 : ẋ = A1x O1 : ẋ = A1x

O2 : ẋ = A2x

O2 : ẋ = A2x
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Sliding motions

Let D be a line in R2, let p ∈ D and let ~n be a unit vector normal to D at p
Definition 1: We say that no sliding motion occurs at p if (A1~n)T (A2~n) > 0

(equivalently: A1 and A2 point in the same half-plane at p)

p

D

~n

Definition 2: D induces no sliding motion for (A1,A2) if no sliding motion occurs at any point

Our contributions

Let σ : R≥+ → {A1,A2} be a switching candidate induced by D1 and D2

Question: if D1 and D2 induce no sliding motion for (A1,A2), is σ stabilizing?

Our results: 2 sufficient conditions based on Lyapunov functions design

Ô we present the first condition and sketch the second one
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Algebraic reformulation of the problem

Ô choose an orientation vector ~vi of Di and define R ∈ R2×2 by ~vT
i R~vi = 0

(without restriction, R is assumed to be symmetric with determinant < 0)

Ô the region O1 (resp., O2) are points x ∈ R2 s.t. xTRx > 0 (resp., xTRx < 0)

D1 : ~v
T
1 R~v1

= 0D2 : ~v T
2 R~v2 = 0

O1 : xTRx > 0 O1 : xTRx > 0

O2 : xTRx < 0

O2 : xTRx < 0
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Theorem

Let A1,A2 ∈ R2×2, let R be a symmetric matrix with negative determinant, let
~v1, ~v2 ∈ R2 such that ~vT

i R~vi = 0 and assume that D1 and D2 induce no sliding motion.
If the following LMIs problem admits a solution:

∃τ1, τ2 ≥ 0 and P1 = PT
1 ,P2 = PT

2 s.t.

(1): P1 − R > 0, P2 + R > 0

(2): −(AT
1 P1 + P1A1)− τ1R > 0, −(AT

2 P2 + P2A2) + τ2R > 0

(3): ~vT
1 (P1 − P2) ~v1 = 0, ~vT

2 (P1 − P2) ~v2 = 0

then, σ : R≥0 → {A1,A2} defined by σ(t) = A1 (resp., A2) if xTRx > 0 (resp., < 0)
is a stabilizing signal.

Ideas of the proof : V : R2 → R defined by V (x) = xT Pi x if x ∈ Oi is
• well-defined (from (3))

• positive and strictly decreasing along trajectories (from (1) and (2))
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A numerical example

From Lin-Antsalkis consider the following two modes

A1 =
(
0 10
0 0

)
A2 =

(
1.5 2
−2 −0.5

)
and the stabilizing switching induced by D1 and D2 with orientation vectors

~v1 =
(
1 0.3

)
~v2 =

(
1 0.11

)
The corresponding matrix is

R =
(
−0.033 −0.095
−0.095 1

)
and the LMIs problem has the following solution

τ1 = 1.8890, τ2 = 1.3550, P1 =
(

0.0229 −0.1376
−0.1376 3.9156

)
, P2 =

(
0.1424 0.2065
0.2065 0.2940

)

C.Chenavier, R.Ushirobira, G.Valmorbida 21st IFAC World Congress July 11-17, 2020 8 / 11



Figure: trajectories converging to the origin are depicted in solid black lines and level sets of the
Lyapunov function (dashed red curves) form "contracting parallelograms"
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Geometric reformulation of the problem

A set P of parallelogram is said to be contracting for (D1,D2) if
• the sides of each parallelogram in P are oriented by the same vectors L1 and L2

• D1 and D2 are the diagonals of each parallelogram in P

• trajectories are decreasing along sides of parallelograms in P

L1A1x < 0

L2A2x < 0

L2A2x < 0

L1A1x < 0

Theorem

Assume that D1 and D2 induce no sliding motions and that a contracting set of
parallelograms exists. The switching signal defined by D1 and D2 is stabilizing.
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Conclusion and perspectives

• We provided two methods for checking stabilization of planar switched systems
induced by lines passing through the origin

• Our methods are based on an algebraic reformulation of the problem and
constructions of Lyapunov functions

• Further works include: construction of stabilizing signal, robustness, allow sliding
motions

THANK YOU FOR LISTENING!
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