Compatible rewriting of noncommutative polynomials for proving operator identities

C.Chenavier
C.Hofstadler
C.G.Rab
G.Regensburger
Johannes Kepler Universität, Linz, Austria

45th ISSAC
Kalamata, Greece, July 20-23, 2020

JYU
JOHANNES KEPLER UNIVERSITÄT LINZ

Der Wissenschaftsfonds.

Proving operator identities

Objective: formally prove operator identities
\triangleright operators are expressible in terms of basic operators
\triangleright "forgetting" the analytic meaning by replacing basic operators by symbols

Prove new identities \rightsquigarrow establish equalities in suitable algebraic structures, e.g.,
\triangleright linear P.D.E.'s with constant/polynomial coeff. \rightsquigarrow polynomial/Weyl algebras
\triangleright integro-diff. systems with smooth unknown functions \rightsquigarrow tensor algebras
\triangleright other systems with mixed operations \rightsquigarrow Ore algebras/extensions, tensor rings

Prove algebraic equalities \rightsquigarrow use rewriting theory
\triangleright e.g., (adaptations of) Gröbner/Janet bases, tensor reduction systems, ...
\triangleright simplify a syntactic expression into an equivalent one, e.g.,

$$
\partial \circ \int=\mathbf{I d}: \quad A \circ \partial \circ \int \circ B \longrightarrow A \circ B
$$

Proving operator identities

Objective: formally prove operator identities
\triangleright operators are expressible in terms of basic operators
\triangleright "forgetting" the analytic meaning by replacing basic operators by symbols

Prove new identities \rightsquigarrow establish equalities in suitable algebraic structures, e.g.,
\triangleright linear P.D.E.'s with constant/polynomial coeff. \rightsquigarrow polynomial/Weyl algebras
\triangleright integro-diff. systems with smooth unknown functions \rightsquigarrow tensor algebras
\triangleright other systems with mixed operations \rightsquigarrow Ore algebras/extensions, tensor rings

Prove algebraic equalities \rightsquigarrow use rewriting theory
\triangleright e.g., (adaptations of) Gröbner/Janet bases, tensor reduction systems, ...
\triangleright simplify a syntactic expression into an equivalent one, e.g.,

$$
\partial \circ \int=\mathbf{I d}: \quad A \circ \partial \circ \int \circ B \longrightarrow A \circ B
$$

Proving operator identities

Objective: formally prove operator identities
\triangleright operators are expressible in terms of basic operators
\triangleright "forgetting" the analytic meaning by replacing basic operators by symbols

Prove new identities \rightsquigarrow establish equalities in suitable algebraic structures, e.g.,
\triangleright linear P.D.E.'s with constant/polynomial coeff. \rightsquigarrow polynomial/Weyl algebras
\triangleright integro-diff. systems with smooth unknown functions \rightsquigarrow tensor algebras
\triangleright other systems with mixed operations \rightsquigarrow Ore algebras/extensions, tensor rings

Prove algebraic equalities \rightsquigarrow use rewriting theory
\triangleright e.g., (adaptations of) Gröbner/Janet bases, tensor reduction systems, ...
\triangleright simplify a syntactic expression into an equivalent one, e.g.,

$$
\partial \circ \int=\mathbf{I d}: \quad A \circ \partial \circ \int \circ B \longrightarrow A \circ B
$$

Proving operator identities

Objective: formally prove operator identities
\triangleright operators are expressible in terms of basic operators
\triangleright "forgetting" the analytic meaning by replacing basic operators by symbols

Prove new identities \rightsquigarrow establish equalities in suitable algebraic structures, e.g.,
\triangleright linear P.D.E.'s with constant/polynomial coeff. \rightsquigarrow polynomial/Weyl algebras
\triangleright integro-diff. systems with smooth unknown functions \rightsquigarrow tensor algebras
\triangleright other systems with mixed operations \rightsquigarrow Ore algebras/extensions, tensor rings

Prove algebraic equalities \rightsquigarrow use rewriting theory
\triangleright e.g., (adaptations of) Gröbner/Janet bases, tensor reduction systems, ...
\triangleright simplify a syntactic expression into an equivalent one, e.g.,

$$
\partial \circ \int=\mathbf{I d}: \quad A \circ \partial \circ \int \circ B \longrightarrow A \circ B
$$

Proving operator identities

Objective: formally prove operator identities
\triangleright operators are expressible in terms of basic operators
\triangleright "forgetting" the analytic meaning by replacing basic operators by symbols

Prove new identities \rightsquigarrow establish equalities in suitable algebraic structures, e.g.,
\triangleright linear P.D.E.'s with constant/polynomial coeff. \rightsquigarrow polynomial/Weyl algebras
\triangleright integro-diff. systems with smooth unknown functions \rightsquigarrow tensor algebras
\triangleright other systems with mixed operations \rightsquigarrow Ore algebras/extensions, tensor rings

Prove algebraic equalities \rightsquigarrow use rewriting theory
\triangleright e.g., (adaptations of) Gröbner/Janet bases, tensor reduction systems, ...
\triangleright simplify a syntactic expression into an equivalent one, e.g.,

$$
\partial \circ \int=\mathbf{I d}: \quad A \circ \partial \circ \int \circ B \longrightarrow A \circ B
$$

Additional task

Take compatibility conditions into account
\triangleright multiplication is not defined everywhere, e.g., matrices
\triangleright composition depends on domains and codomains

$$
\text { e.g., } \quad \partial: C^{k+1}(I) \rightarrow C^{k}(I), \quad \int: C^{k}(I) \rightarrow C^{k+1}(I)
$$

Existing method: based on quiver representation (Hossein Poor, R., R., arXiv:1910.06165)
\triangleright requires to work with "uniformly compatible" polynomials

Our contributions

Theoretical part: extend the quiver approach to prove more identities
\rightarrow based on Q-consequences
Algorithmic part: compute Q-consequences using rewriting
\rightarrow restrictions on the computations with G.B.

Additional task

Take compatibility conditions into account
\triangleright multiplication is not defined everywhere, e.g., matrices
\triangleright composition depends on domains and codomains

$$
\text { e.g., } \quad \partial: C^{k+1}(I) \rightarrow C^{k}(I), \quad \int: C^{k}(I) \rightarrow C^{k+1}(I)
$$

Existing method: based on quiver representation (Hossein Poor, R., R., arXiv:1910.06165)
\triangleright requires to work with "uniformly compatible" polynomials

Our contributions

Theoretical part: extend the quiver approach to prove more identities
\rightarrow based on Q-consequences
Algorithmic part: compute Q-consequences using rewriting
\rightarrow restrictions on the computations with G.B.

Additional task

Take compatibility conditions into account
\triangleright multiplication is not defined everywhere, e.g., matrices
\triangleright composition depends on domains and codomains

$$
\text { e.g., } \quad \partial: C^{k+1}(I) \rightarrow C^{k}(I), \quad \int: C^{k}(I) \rightarrow C^{k+1}(I)
$$

Existing method: based on quiver representation (Hossein Poor, R., R., arXiv:1910.06165)
\triangleright requires to work with "uniformly compatible" polynomials

Our contributions

Theoretical part: extend the quiver approach to prove more identities
\rightarrow based on Q-consequences
Algorithmic part: compute Q-consequences using rewriting
\rightarrow restrictions on the computations with G.B.

Additional task

Take compatibility conditions into account
\triangleright multiplication is not defined everywhere, e.g., matrices
\triangleright composition depends on domains and codomains

$$
\text { e.g., } \quad \partial: C^{k+1}(I) \rightarrow C^{k}(I), \quad \int: C^{k}(I) \rightarrow C^{k+1}(I)
$$

Existing method: based on quiver representation (Hossein Poor, R., R., arXiv:1910.06165)
\triangleright requires to work with "uniformly compatible" polynomials

Our contributions

Theoretical part: extend the quiver approach to prove more identities
\rightarrow based on Q-consequences
Algorithmic part: compute Q-consequences using rewriting
\rightarrow restrictions on the computations with G.B.

Additional task

Take compatibility conditions into account
\triangleright multiplication is not defined everywhere, e.g., matrices
\triangleright composition depends on domains and codomains

$$
\text { e.g., } \quad \partial: C^{k+1}(I) \rightarrow C^{k}(I), \quad \int: C^{k}(I) \rightarrow C^{k+1}(I)
$$

Existing method: based on quiver representation (Hossein Poor, R., R., arXiv:1910.06165)
\triangleright requires to work with "uniformly compatible" polynomials

Our contributions

Theoretical part: extend the quiver approach to prove more identities
\rightarrow based on Q-consequences
Algorithmic part: compute Q-consequences using rewriting
\rightarrow restrictions on the computations with G.B.

Proof of operator identities

Given: basic operators satisfying identities, e.g.,

$$
\partial(f):=f^{\prime}, \quad \int(f):=\int_{x_{0}}^{x} f(t) d t, \quad \operatorname{Eval}(f):=f\left(x_{0}\right)
$$

are s.t.

$$
\int \circ \partial=\mathbf{I d}-\text { Eval }, \quad \partial \circ \int=\mathbf{I d}
$$

i.e., $\quad \forall f: \quad \int_{x_{0}}^{x} f^{\prime}(t) d t=f(x)-f\left(x_{0}\right), \quad\left(\int_{x_{0}}^{x} f(t) d t\right)^{\prime}=f(x)$

Objective: prove new identities using symbolic methods, e.g.,

$$
\text { Eval } \circ \int=0,
$$

i.e., $\quad \forall f: \quad \int_{x_{0}}^{x_{0}} f(t) d t=0, \quad$ follows from

$$
\int-\text { Eval } \circ \int=\int \circ \partial \circ \int=\int
$$

Proof of operator identities

Given: basic operators satisfying identities, e.g.,

$$
\partial(f):=f^{\prime}, \quad \int(f):=\int_{x_{0}}^{x} f(t) d t, \quad \operatorname{Eval}(f):=f\left(x_{0}\right)
$$

are s.t.

$$
\int \circ \partial=\mathbf{I d}-\text { Eval, }, \quad \partial \circ \int=\mathbf{I d}
$$

i.e., $\quad \forall f: \quad \int_{x_{0}}^{x} f^{\prime}(t) d t=f(x)-f\left(x_{0}\right), \quad\left(\int_{x_{0}}^{x} f(t) d t\right)^{\prime}=f(x)$

Objective: prove new identities using symbolic methods, e.g.,

$$
\text { Eval } \circ \int=0,
$$

i.e., $\quad \forall f: \quad \int_{x_{0}}^{x_{0}} f(t) d t=0, \quad$ follows from

$$
\int-\text { Eval } \circ \int=\int \circ \partial \circ \int=\int
$$

Proof of operator identities

Given: basic operators satisfying identities, e.g.,

$$
\partial(f):=f^{\prime}, \quad \int(f):=\int_{x_{0}}^{x} f(t) d t, \quad \operatorname{Eval}(f):=f\left(x_{0}\right)
$$

are s.t.

$$
\int \circ \partial=\mathbf{I d}-\text { Eval }, \quad \partial \circ \int=\mathbf{I d}
$$

i.e., $\quad \forall f: \quad \int_{x_{0}}^{x} f^{\prime}(t) d t=f(x)-f\left(x_{0}\right), \quad\left(\int_{x_{0}}^{x} f(t) d t\right)^{\prime}=f(x)$

Objective: prove new identities using symbolic methods, e.g.,

$$
\text { Eval } \circ \int=0,
$$

i.e., $\quad \forall f: \quad \int_{x_{0}}^{x_{0}} f(t) d t=0, \quad$ follows from

$$
\int-\text { Eval } \circ \int=\int \circ \partial \circ \int=\int
$$

Formal computations with noncommutative polynomials

Example:

$$
\partial, \quad \int, \quad \text { Eval } \quad \text { and } \quad \int \circ \partial-\mathbf{I d}+\mathbf{E v a l}=0, \quad \partial \circ \int-\mathbf{I d}=0
$$

Polynomial translation:

$$
\mathbb{K}\langle d, i, e\rangle \quad \ni \quad i d-1+e, d i-1
$$

New identity:

$$
e i=(i d-1+e) i-i(d i-1)
$$

Additionally: check compatiblity of cofactor decomposition with domains and codomains

$$
\partial: C^{k+1}(I) \rightarrow C^{k}(I), \quad \int: C^{k}(I) \rightarrow C^{k+1}(I), \quad \text { Eval }: C^{k+1}(I) \rightarrow C^{k+1}(I)
$$

Formal computations with noncommutative polynomials

Example:

$$
\partial, \quad \int, \quad \text { Eval } \quad \text { and } \quad \int \circ \partial-\mathbf{I d}+\text { Eval }=0, \quad \partial \circ \int-\| \mathbf{d}=0
$$

Polynomial translation:

$$
\mathbb{K}\langle\mathrm{d}, \mathrm{i}, \mathrm{e}\rangle \quad \ni \quad \text { id }-1+\mathrm{e}, \mathrm{di}-1
$$

New identity:

$$
e i=(i d-1+e) i-i(d i-1)
$$

Additionally: check compatiblity of cofactor decomposition with domains and codomains

$$
\partial: C^{k+1}(I) \rightarrow C^{k}(I), \quad \int: C^{k}(I) \rightarrow C^{k+1}(I), \quad \text { Eval }: C^{k+1}(I) \rightarrow C^{k+1}(I)
$$

Formal computations with noncommutative polynomials

Example:

$$
\partial, \quad \int, \quad \text { Eval } \quad \text { and } \quad \int \circ \partial-I d+\text { Eval }=0, \quad \partial \circ \int-I d=0
$$

Polynomial translation:

$$
\mathbb{K}\langle d, i, e\rangle \quad \ni \quad \text { id }-1+\mathrm{e}, \mathrm{di}-1
$$

New identity:

$$
e i=(\mathrm{id}-1+\mathrm{e}) i-i(\mathrm{di}-1)
$$

Additionally: check compatiblity of cofactor decomposition with domains and codomains

$$
\partial: C^{k+1}(I) \rightarrow C^{k}(I), \quad \int: C^{k}(I) \rightarrow C^{k+1}(I), \quad \text { Eval }: C^{k+1}(I) \rightarrow C^{k+1}(I)
$$

Formal computations with noncommutative polynomials

Example:

$$
\partial, \quad \int, \quad \text { Eval } \quad \text { and } \quad \int \circ \partial-\mathbf{I d}+\mathbf{E v a l}=0, \quad \partial \circ \int-\mathbf{I d}=0
$$

Polynomial translation:

$$
\mathbb{K}\langle d, i, e\rangle \quad \ni \quad i d-1+e, d i-1
$$

New identity:

$$
e i=(i d-1+e) i-i(d i-1)
$$

Additionally: check compatiblity of cofactor decomposition with domains and codomains

$$
\partial: \mathrm{C}^{\mathrm{k}+1}(\mathrm{I}) \rightarrow \mathrm{C}^{\mathrm{k}}(\mathrm{I}), \quad \int: \mathrm{C}^{\mathrm{k}}(\mathrm{I}) \rightarrow \mathrm{C}^{\mathrm{k}+1}(\mathrm{I}), \quad \text { Eval }: \mathrm{C}^{\mathrm{k}+1}(\mathrm{I}) \rightarrow \mathrm{C}^{\mathrm{k}+1}(\mathrm{I})
$$

Quivers represented by operators

Def.: consider a labelled quiver Q (one letter may label multiple edges)
$\triangleright f \in \mathbb{K}\langle X\rangle$ is a Q-consequence of $F \subseteq \mathbb{K}\langle X\rangle$ if it admits a compatible decomposition

Ex. of a Q-csq.: $e i=(i d-1+e) i-i(d i-1)=i d i-i+e i-i d i+i$ each monomial labels a path $\stackrel{\text { * }}{ }$ •

Theorem

If all elements of realizations of F are zero and if f is a Q-consequence of F, then all realizations of f are zero

Quivers represented by operators

Def.: consider a labelled quiver Q (one letter may label multiple edges)
$\triangleright f \in \mathbb{K}\langle X\rangle$ is a Q-consequence of $F \subseteq \mathbb{K}\langle X\rangle$ if it admits a compatible decomposition

Ex. of a Q-csq.: $e i=(i d-1+e) i-i(d i-1)=i d i-i+e i-i d i+i$ each monomial labels a path $\stackrel{\text { * }}{ }$ •

Theorem

If all elements of realizations of F are zero and if f is a Q-consequence of F, then all realizations of f are zero

Quivers represented by operators

Def.: consider a labelled quiver Q (one letter may label multiple edges)
$\triangleright f \in \mathbb{K}\langle X\rangle$ is a Q-consequence of $F \subseteq \mathbb{K}\langle X\rangle$ if it admits a compatible decomposition

Ex. of a Q-csq.: $e i=(i d-1+e) i-i(d i-1)=i d i-i+e i-i d i+i$ each monomial labels a path $\stackrel{\text { * }}{ }$ •

Theorem

If all elements of realizations of F are zero and if f is a Q-consequence of F, then all realizations of f are zero

Quivers represented by operators

Def.: consider a labelled quiver Q (one letter may label multiple edges)
$\triangleright f \in \mathbb{K}\langle X\rangle$ is a Q-consequence of $F \subseteq \mathbb{K}\langle X\rangle$ if it admits a compatible decomposition

Ex. of a Q-csq.: $e i=(i d-1+e) i-i(d i-1)=\mathrm{idi}-\mathbf{i}+\mathrm{ei}-\mathrm{idi}+\mathbf{i}$ each monomial labels a path $\stackrel{\text { * }}{\longrightarrow}$

Theorem

If all elements of realizations of F are zero and if f is a Q-consequence of F, then all realizations of f are zero

Quivers represented by operators

Def.: consider a labelled quiver Q (one letter may label multiple edges) with a representation
$\triangleright f \in \mathbb{K}\langle X\rangle$ is a Q-consequence of $F \subseteq \mathbb{K}\langle X\rangle$ if it admits a compatible decomposition

Ex. of a Q-csq.: $e i=(i d-1+e) i-i(d i-1)=i d i-i+e i-i d i+i$ each monomial labels a path $\stackrel{\text { * }}{ }$ •

Theorem

If all elements of realizations of F are zero and if f is a Q-consequence of F, then all realizations of f are zero

Quivers represented by operators

Def.: consider a labelled quiver Q (one letter may label multiple edges) with a representation
$\triangleright f \in \mathbb{K}\langle X\rangle$ is a Q-consequence of $F \subseteq \mathbb{K}\langle X\rangle$ if it admits a compatible decomposition

Ex. of a Q-csq.: $e i=(i d-1+e) i-i(d i-1)=i d i-i+e i-i d i+i$ each monomial labels a path $\stackrel{*}{\longrightarrow}$ •

Theorem

If all elements of realizations of F are zero and if f is a Q-consequence of F, then all realizations of f are zero

Quivers represented by operators

Def.: consider a labelled quiver Q (one letter may label multiple edges) with a representation
$\triangleright f \in \mathbb{K}\langle X\rangle$ is a Q-consequence of $F \subseteq \mathbb{K}\langle X\rangle$ if it admits a compatible decomposition

Ex. of a Q-csq.: $e i=(i d-1+e) i-i(d i-1)=i d i-i+e i-i d i+i$ each monomial labels a path $\stackrel{\text { * }}{ }$ •

Theorem

If all elements of realizations of F are zero and if f is a Q-consequence of F, then all realizations of f are zero

Quivers represented by operators

Def.: consider a labelled quiver Q (one letter may label multiple edges) with a representation
$\triangleright f \in \mathbb{K}\langle X\rangle$ is a Q-consequence of $F \subseteq \mathbb{K}\langle X\rangle$ if it admits a compatible decomposition
\triangleright a realization of $f \in \mathbb{K}\langle X\rangle$ is an image of f by the representation
Ex. of a Q-csq.: $e i=(i d-1+e) i-i(d i-1)=i d i-i+e i-i d i+i$ each monomial labels a path $\stackrel{*}{\longrightarrow}$ •

Theorem

If all elements of realizations of F are zero and if f is a Q-consequence of F, then all realizations of f are zero

Quivers represented by operators

Def.: consider a labelled quiver Q (one letter may label multiple edges) with a representation
$\triangleright f \in \mathbb{K}\langle X\rangle$ is a Q-consequence of $F \subseteq \mathbb{K}\langle X\rangle$ if it admits a compatible decomposition
\triangleright a realization of $f \in \mathbb{K}\langle X\rangle$ is an image of f by the representation
Ex. of a Q-csq.: $e i=(i d-1+e) i-i(d i-1)=i d i-i+e i-i d i+i$ each monomial labels a path $\stackrel{*}{\longrightarrow}$ •

Theorem

If all elements of realizations of F are zero and if f is a Q-consequence of F, then all realizations of f are zero

Illustrating example

Consider the inhomogeneous linear O.D.E.

$$
\begin{equation*}
y^{\prime \prime}(x)+A_{1}(x) y^{\prime}(x)+A_{0}(x) y(x)=r(x) \tag{1}
\end{equation*}
$$

Assumption: (1) can be factored into the 1st order equations

$$
y^{\prime}(x)-B_{2}(x) y(x)=z(x) \quad \text { and } \quad z^{\prime}(x)-B_{1}(x) z(x)=r(x)
$$

General solution: given by

$$
\begin{equation*}
y(x)=H_{2}(x) \int_{x_{2}}^{x} H_{2}(t)^{-1} H_{1}(t) \int_{x_{1}}^{t} H_{1}(u)^{-1} r(u) d u d t \tag{2}
\end{equation*}
$$

where $H_{i}(x)$ is s.t. $H_{i}^{\prime}(x)-B_{i}(x) H_{i}(x)=0$ and $H_{i}(x)^{-1}$ exists

Illustration of the theorem: formally prove that (2) is a solution of (1)

Illustrating example

Consider the inhomogeneous linear O.D.E.

$$
\begin{equation*}
y^{\prime \prime}(x)+A_{1}(x) y^{\prime}(x)+A_{0}(x) y(x)=r(x) \tag{1}
\end{equation*}
$$

Assumption: (1) can be factored into the 1st order equations

$$
y^{\prime}(x)-B_{2}(x) y(x)=z(x) \quad \text { and } \quad z^{\prime}(x)-B_{1}(x) z(x)=r(x)
$$

General solution: given by

$$
\begin{equation*}
y(x)=H_{2}(x) \int_{x_{2}}^{x} H_{2}(t)^{-1} H_{1}(t) \int_{x_{1}}^{t} H_{1}(u)^{-1} r(u) d u d t \tag{2}
\end{equation*}
$$

where $H_{i}(x)$ is s.t. $H_{i}^{\prime}(x)-B_{i}(x) H_{i}(x)=0$ and $H_{i}(x)^{-1}$ exists

Illustration of the theorem: formally prove that (2) is a solution of (1)

Illustrating example

Assumptions: prove that

$$
y(x)=H_{2}(x) \int_{x_{2}}^{x} H_{2}(t)^{-1} H_{1}(t) \int_{x_{1}}^{t} H_{1}(u)^{-1} r(u) d u d t
$$

is solution of

$$
\left(\left(\partial-B_{1}\right) \circ\left(\partial-B_{2}\right)\right)(y(x))=r(x)
$$

where H_{i} is s.t. $H_{i}^{\prime}(x)-B_{i}(x) H_{i}(x)=0$ and $H_{i}(x)^{-1}$ exists

Algebraic part: $X:=\left\{h_{1}, h_{2}, b_{1}, b_{2}, \tilde{h}_{1}, \tilde{h}_{2}, i, d\right\}, \quad F:=\left\{f_{1}, \ldots, f_{5}\right\} \subset \mathbb{K}\langle X\rangle$, where

$$
\begin{aligned}
& f_{1}:=d h_{1}-h_{1} d-b_{1} h_{1}, \quad f_{2}:=d h_{2}-h_{2} d-b_{2} h_{2}, \\
& f_{3}:=h_{1} \tilde{h}_{1}-1, \quad f_{4}:=h_{2} \tilde{h}_{2}-1, \quad f_{5}:=d i-1
\end{aligned}
$$

Objective: prove that f is a Q-consequence of F, where

$$
f:=\left(d-b_{1}\right)\left(d-b_{2}\right) h_{2} i \tilde{h}_{2} h_{1} i \tilde{h}_{1}-1
$$

First method for proving Q-consequences

Represented quiver: we need 2nd order derivative/integration and regularity assumptions

Fact: $F:=\left\{f_{1}, \ldots, f_{5}\right\} \Rightarrow f \xrightarrow{*}_{F} 0$ using an orientation of f_{i} 's

$$
\begin{gathered}
d h_{1} \longrightarrow h_{1} d+b_{1} h_{1}, \quad d h_{2} \longrightarrow h_{2} d+b_{2} h_{2}, \\
h_{1} \tilde{h}_{1} \longrightarrow 1, \quad h_{2} \tilde{h}_{2} \longrightarrow 1, \quad d i \longrightarrow 1
\end{gathered}
$$

and keeping track of cofactors, we get

$$
\begin{align*}
& f=f_{1} i \tilde{h}_{1}+\left(d-b_{1}\right) f_{2} i \tilde{h}_{2} h_{1} i \tilde{h}_{1}+f_{3}+\left(d-b_{1}\right) f_{4} h_{1} i \tilde{h}_{1} \\
&+\left(d-b_{1}\right) h_{2} f_{5} \tilde{h}_{2} h_{1} i \tilde{h}_{1}+h_{1} f_{5} \tilde{h}_{1} \tag{3}
\end{align*}
$$

By a case analysis: (3) proves that f is a Q-consequence of F

First method for proving Q-consequences

Represented quiver: we need 2nd order derivative/integration and regularity assumptions

Fact: $F:=\left\{f_{1}, \ldots, f_{5}\right\} \Rightarrow f \xrightarrow{*}_{F} 0$ using an orientation of f_{i} 's

$$
\begin{gathered}
d h_{1} \longrightarrow h_{1} d+b_{1} h_{1}, \quad d h_{2} \longrightarrow h_{2} d+b_{2} h_{2}, \\
h_{1} \tilde{h}_{1} \longrightarrow 1, \quad h_{2} \tilde{h}_{2} \longrightarrow 1, \quad d i \longrightarrow 1
\end{gathered}
$$

and keeping track of cofactors, we get

$$
\begin{align*}
& f=f_{1} i \tilde{h}_{1}+\left(d-b_{1}\right) f_{2} i \tilde{h}_{2} h_{1} i \tilde{h}_{1}+f_{3}+\left(d-b_{1}\right) f_{4} h_{1} i \tilde{h}_{1} \\
&+\left(d-b_{1}\right) h_{2} f_{5} \tilde{h}_{2} h_{1} i \tilde{h}_{1}+h_{1} f_{5} \tilde{h}_{1} \tag{3}
\end{align*}
$$

By a case analysis: (3) proves that f is a Q-consequence of F

First method for proving Q-consequences

Represented quiver: we need 2nd order derivative/integration and regularity assumptions

Fact: $F:=\left\{f_{1}, \ldots, f_{5}\right\} \Rightarrow f \xrightarrow{*}_{F} 0$ using an orientation of f_{i} 's

$$
\begin{gathered}
d h_{1} \longrightarrow h_{1} d+b_{1} h_{1}, \quad d h_{2} \longrightarrow h_{2} d+b_{2} h_{2}, \\
h_{1} \tilde{h}_{1} \longrightarrow 1, \quad h_{2} \tilde{h}_{2} \longrightarrow 1, \quad d i \longrightarrow 1
\end{gathered}
$$

and keeping track of cofactors, we get

$$
\begin{align*}
& f=f_{1} i \tilde{h}_{1}+\left(d-b_{1}\right) f_{2} i \tilde{h}_{2} h_{1} i \tilde{h}_{1}+f_{3}+\left(d-b_{1}\right) f_{4} h_{1} i \tilde{h}_{1} \\
&+\left(d-b_{1}\right) h_{2} f_{5} \tilde{h}_{2} h_{1} i \tilde{h}_{1}+h_{1} f_{5} \tilde{h}_{1} \tag{3}
\end{align*}
$$

By a case analysis: (3) proves that f is a Q-consequence of F

First method for proving Q-consequences

Represented quiver: we need 2nd order derivative/integration and regularity assumptions

Fact: $F:=\left\{f_{1}, \ldots, f_{5}\right\} \Rightarrow f \xrightarrow{*}_{F} 0$ using an orientation of f_{i} 's

$$
\begin{gathered}
d h_{1} \longrightarrow h_{1} d+b_{1} h_{1}, \quad d h_{2} \longrightarrow h_{2} d+b_{2} h_{2}, \\
h_{1} \tilde{h}_{1} \longrightarrow 1, \quad h_{2} \tilde{h}_{2} \longrightarrow 1, \quad d i \longrightarrow 1
\end{gathered}
$$

and keeping track of cofactors, we get

$$
\begin{align*}
& f=f_{1} i \tilde{h}_{1}+\left(d-b_{1}\right) f_{2} i \tilde{h}_{2} h_{1} i \tilde{h}_{1}+f_{3}+\left(d-b_{1}\right) f_{4} h_{1} i \tilde{h}_{1} \\
&+\left(d-b_{1}\right) h_{2} f_{5} \tilde{h}_{2} h_{1} i \tilde{h}_{1}+h_{1} f_{5} \tilde{h}_{1} \tag{3}
\end{align*}
$$

By a case analysis: (3) proves that f is a Q-consequence of F

First method for proving Q-consequences

Represented quiver: we need 2nd order derivative/integration and regularity assumptions

Fact: $F:=\left\{f_{1}, \ldots, f_{5}\right\} \Rightarrow f{ }_{\rightarrow}^{*} F 0$ using an orientation of f_{i} 's

$$
\begin{array}{cc}
d h_{1} \longrightarrow h_{1} d+b_{1} h_{1}, \quad d h_{2} \longrightarrow h_{2} d+b_{2} h_{2}, \\
h_{1} \tilde{h}_{1} \longrightarrow 1, \quad h_{2} \tilde{h}_{2} \longrightarrow 1, & d i \longrightarrow 1
\end{array}
$$

and keeping track of cofactors, we get

$$
\begin{align*}
& f=\mathrm{f}_{1} i \tilde{h}_{1}+\left(d-b_{1}\right) \mathrm{f}_{2} i \tilde{h}_{2} h_{1} i \tilde{h}_{1}+\mathrm{f}_{3}+\left(d-b_{1}\right) \mathrm{f}_{4} h_{1} i \tilde{h}_{1} \\
&+\left(d-b_{1}\right) h_{2} \mathrm{f}_{5} \tilde{h}_{2} h_{1} i \tilde{h}_{1}+h_{1} \mathrm{f}_{5} \tilde{h}_{1} \tag{3}
\end{align*}
$$

By a case analysis: (3) proves that f is a Q-consequence of F

First method for proving Q-consequences

Represented quiver: we need 2nd order derivative/integration and regularity assumptions

Fact: $F:=\left\{f_{1}, \ldots, f_{5}\right\} \Rightarrow f \xrightarrow{*}_{F} 0$ using an orientation of f_{i} 's

$$
\begin{array}{cc}
d h_{1} \longrightarrow h_{1} d+b_{1} h_{1}, \quad d h_{2} \longrightarrow h_{2} d+b_{2} h_{2}, \\
h_{1} \tilde{h}_{1} \longrightarrow 1, \quad h_{2} \tilde{h}_{2} \longrightarrow 1, & d i \longrightarrow 1
\end{array}
$$

and keeping track of cofactors, we get

$$
\begin{align*}
& f=f_{1} i \tilde{h}_{1}+\left(d-b_{1}\right) f_{2} i \tilde{h}_{2} h_{1} i \tilde{h}_{1}+f_{3}+\left(d-b_{1}\right) f_{4} h_{1} i \tilde{h}_{1} \\
&+\left(d-b_{1}\right) h_{2} f_{5} \tilde{h}_{2} h_{1} i \tilde{h}_{1}+h_{1} f_{5} \tilde{h}_{1} \tag{3}
\end{align*}
$$

By a case analysis: (3) proves that f is a Q-consequence of F

Second method for proving Q-consequences

Restrict to rew. steps s.t.
We only use "valid" computations

Compatible rewriting rules

Signatures: $\sigma\left(d h_{2}\right)=\{\bullet \xrightarrow{*} \bullet, \quad \bullet \xrightarrow{*} \bullet\}, \quad \sigma\left(h_{2} d\right)=\{\bullet \xrightarrow{*} \bullet\}, \quad \sigma\left(b_{2} h_{2}\right)=\{\bullet \xrightarrow{*} \bullet\}$

Definition: a rew. rule $m \rightarrow g$ is Q-compatible if $\sigma(m) \subseteq \sigma(g)$, e.g.,
$\triangleright d h_{2} \rightarrow h_{2} d+b_{2} h_{2}$ is not compatible (1st method involved invalid computations)
$\triangleright h_{2} d \rightarrow d h_{2}-b_{2} h_{2}$ is compatible

Second method for proving Q-consequences

Restrict to rew. steps s.t.

We only use "valid" computations

Compatible rewriting rules

Signatures: $\sigma\left(d h_{2}\right)=\{\bullet \xrightarrow{*} \bullet, \quad \bullet \xrightarrow{*} \bullet\}, \quad \sigma\left(h_{2} d\right)=\{\bullet \xrightarrow{*} \bullet\}, \quad \sigma\left(b_{2} h_{2}\right)=\{\bullet \xrightarrow{*} \bullet\}$

Definition: a rew. rule $m \rightarrow g$ is Q-compatible if $\sigma(m) \subseteq \sigma(g)$, e.g.,
$\triangleright d h_{2} \rightarrow h_{2} d+b_{2} h_{2}$ is not compatible (1st method involved invalid computations)
$\triangleright h_{2} d \rightarrow d h_{2}-b_{2} h_{2}$ is compatible

Second method for proving Q-consequences

Restrict to rew. steps s.t.
We only use "valid" computations

Compatible rewriting rules

Signatures: $\sigma\left(\mathrm{dh}_{2}\right)=\{\bullet \xrightarrow{*} \bullet, \quad \bullet \xrightarrow{*} \bullet\}, \quad \sigma\left(h_{2} d\right)=\{\bullet \xrightarrow{*} \bullet\}, \quad \sigma\left(b_{2} h_{2}\right)=\{\bullet \xrightarrow{*} \bullet\}$

Definition: a rew. rule $m \rightarrow g$ is Q-compatible if $\sigma(m) \subseteq \sigma(g)$, e.g.,
$\triangleright d h_{2} \rightarrow h_{2} d+b_{2} h_{2}$ is not compatible (1st method involved invalid computations)
$\triangleright h_{2} d \rightarrow d h_{2}-b_{2} h_{2}$ is compatible

Second method for proving Q-consequences

Restrict to rew. steps s.t.
We only use "valid" computations

Compatible rewriting rules

Signatures: $\sigma\left(\mathrm{dh}_{2}\right)=\{\bullet \stackrel{*}{\longrightarrow} \bullet, \quad \bullet \xrightarrow{*} \bullet\}, \quad \sigma\left(h_{2} d\right)=\{\bullet \xrightarrow{*} \bullet\}, \quad \sigma\left(b_{2} h_{2}\right)=\{\bullet \xrightarrow{*} \bullet\}$

Definition: a rew. rule $m \rightarrow g$ is Q-compatible if $\sigma(m) \subseteq \sigma(g)$, e.g.,
$\triangleright d h_{2} \rightarrow h_{2} d+b_{2} h_{2}$ is not compatible (1st method involved invalid computations)
$\triangleright h_{2} d \rightarrow d h_{2}-b_{2} h_{2}$ is compatible

Second method for proving Q-consequences

Restrict to rew. steps s.t.
We only use "valid" computations

Compatible rewriting rules

Signatures: $\sigma\left(d h_{2}\right)=\{\bullet \xrightarrow{*} \bullet, \quad \bullet \xrightarrow{*} \bullet\}, \quad \sigma\left(\mathrm{h}_{2} \mathrm{~d}\right)=\{\bullet \xrightarrow{*} \bullet\}, \quad \sigma\left(b_{2} h_{2}\right)=\{\bullet \xrightarrow{*} \bullet\}$

Definition: a rew. rule $m \rightarrow g$ is Q-compatible if $\sigma(m) \subseteq \sigma(g)$, e.g.,
$\triangleright d h_{2} \rightarrow h_{2} d+b_{2} h_{2}$ is not compatible (1st method involved invalid computations)
$\triangleright h_{2} d \rightarrow d h_{2}-b_{2} h_{2}$ is compatible

Second method for proving Q-consequences

Restrict to rew. steps s.t.
We only use "valid" computations

Compatible rewriting rules

Signatures: $\sigma\left(d h_{2}\right)=\{\bullet \xrightarrow{*} \bullet, \quad \bullet \xrightarrow{*} \bullet\}, \quad \sigma\left(h_{2} d\right)=\{\bullet \xrightarrow{*} \bullet\}, \quad \sigma\left(\mathbf{b}_{2} \mathbf{h}_{2}\right)=\{\bullet \xrightarrow{*} \bullet\}$

Definition: a rew. rule $m \rightarrow g$ is Q-compatible if $\sigma(m) \subseteq \sigma(g)$, e.g.,
$\triangleright d h_{2} \rightarrow h_{2} d+b_{2} h_{2}$ is not compatible (1st method involved invalid computations)
$\triangleright h_{2} d \rightarrow d h_{2}-b_{2} h_{2}$ is compatible

Second method for proving Q-consequences

Restrict to rew. steps s.t.
We only use "valid" computations

Compatible rewriting rules

Signatures: $\sigma\left(d h_{2}\right)=\{\bullet \xrightarrow{*} \bullet, \quad \bullet \xrightarrow{*} \bullet\}, \quad \sigma\left(h_{2} d\right)=\{\bullet \xrightarrow{*} \bullet\}, \quad \sigma\left(b_{2} h_{2}\right)=\{\bullet \xrightarrow{*} \bullet\}$

Definition: a rew. rule $m \rightarrow g$ is Q-compatible if $\sigma(m) \subseteq \sigma(g)$, e.g.,
$\triangleright d h_{2} \rightarrow h_{2} d+b_{2} h_{2}$ is not compatible (1st method involved invalid computations)
$\triangleright h_{2} d \rightarrow d h_{2}-b_{2} h_{2}$ is compatible

Theorem

Let Q be a quiver labelled by X, let $F \subset \mathbb{K}\langle X\rangle$ and let $f \in \mathbb{K}\langle X\rangle$. Assume that each rew. rule is Q-compatible and $f \xrightarrow{*} F 0$. Then,

$$
f \text { is compatible with } Q \quad \Leftrightarrow \quad f \text { is a } Q \text {-consequence }
$$

Summary of the 2nd method for proving Q-consequences

Using the Theorem:
\triangleright representation(s) of the quiver \rightsquigarrow map any polynomial to the operator(s) it represents
\triangleright elements of $F \rightsquigarrow$ polynomial expressions of known operator identities
$\triangleright f \rightsquigarrow$ polynomial expression of the identity we wish to prove
$\triangleright f \xrightarrow{*}_{F} 0$ with compatible rew. rules only \rightsquigarrow the identity is proven

Completion

Motivating example: consider as previously $F:=\left\{f_{1}, \ldots, f_{5}\right\}$ and f
\triangleright for the deglex order s.t. $b_{1}, h_{1}<d<b_{2}<h_{2}$, we get the compatible rew. rules

$$
d h_{1} \rightarrow h_{1} d+b_{1} h_{1}, \quad h_{2} d \rightarrow d h_{2}-b_{2} h_{2}, \quad h_{1} \tilde{h}_{1} \rightarrow 1, \quad h_{2} \tilde{h}_{2} \rightarrow 1, \quad d i \rightarrow 1
$$

\triangleright problem: f does not rewrite into 0
$\rightsquigarrow \quad$ we need a compatible completion procedure
Adaptation of the Buchberger's proc.: the compatible monomial $h_{2} d i$ induces

$$
\begin{gathered}
\mathrm{SP}=d h_{2} i-b_{2} h_{2} i-h_{2}, \quad \mathrm{LM}(\mathrm{SP})=b_{2} h_{2} i \\
\triangleright \sigma\left(b_{2} h_{2} i\right)=\{\bullet \stackrel{*}{\rightarrow} \bullet\} \subseteq \sigma\left(d h_{2} i\right) \cap \sigma\left(h_{2}\right) \quad \rightsquigarrow \quad \text { we keep } f_{6}:=d h_{2} i-b_{2} h_{2} i-h_{2}
\end{gathered}
$$

Completion

Motivating example: consider as previously $F:=\left\{f_{1}, \ldots, f_{5}\right\}$ and f
\triangleright for the deglex order s.t. $b_{1}, h_{1}<d<b_{2}<h_{2}$, we get the compatible rew. rules

$$
d h_{1} \rightarrow h_{1} d+b_{1} h_{1}, \quad h_{2} d \rightarrow d h_{2}-b_{2} h_{2}, \quad h_{1} \tilde{h}_{1} \rightarrow 1, \quad h_{2} \tilde{h}_{2} \rightarrow 1, \quad d i \rightarrow 1
$$

\triangleright problem: f does not rewrite into 0
$\rightsquigarrow \quad$ we need a compatible completion procedure
Adaptation of the Buchberger's proc.: the compatible monomial $h_{2} d i$ induces

$$
\begin{gathered}
\mathrm{SP}=d h_{2} i-b_{2} h_{2} i-h_{2}, \quad \mathrm{LM}(\mathrm{SP})=b_{2} h_{2} i \\
\triangleright \sigma\left(b_{2} h_{2} i\right)=\{\bullet \stackrel{*}{\rightarrow} \bullet\} \subseteq \sigma\left(d h_{2} i\right) \cap \sigma\left(h_{2}\right) \quad \rightsquigarrow \quad \text { we keep } f_{6}:=d h_{2} i-b_{2} h_{2} i-h_{2}
\end{gathered}
$$

Completion

Motivating example: consider as previously $F:=\left\{f_{1}, \ldots, f_{5}\right\}$ and f
\triangleright for the deglex order s.t. $b_{1}, h_{1}<d<b_{2}<h_{2}$, we get the compatible rew. rules

$$
d h_{1} \rightarrow h_{1} d+b_{1} h_{1}, \quad h_{2} d \rightarrow d h_{2}-b_{2} h_{2}, \quad h_{1} \tilde{h}_{1} \rightarrow 1, \quad h_{2} \tilde{h}_{2} \rightarrow 1, \quad d i \rightarrow 1
$$

\triangleright problem: f does not rewrite into 0
$\rightsquigarrow \quad$ we need a compatible completion procedure
Adaptation of the Buchberger's proc.: the compatible monomial $h_{2} d i$ induces

$$
\begin{gathered}
\mathrm{SP}=d h_{2} i-b_{2} h_{2} i-h_{2}, \quad \mathrm{LM}(\mathrm{SP})=b_{2} h_{2} i \\
\triangleright \sigma\left(b_{2} h_{2} i\right)=\{\bullet \stackrel{*}{\rightarrow} \bullet\} \subseteq \sigma\left(d h_{2} i\right) \cap \sigma\left(h_{2}\right) \quad \rightsquigarrow \quad \text { we keep } f_{6}:=d h_{2} i-b_{2} h_{2} i-h_{2}
\end{gathered}
$$

Completion

Motivating example: consider as previously $F:=\left\{f_{1}, \ldots, f_{5}\right\}$ and f
\triangleright for the deglex order s.t. $b_{1}, h_{1}<d<b_{2}<h_{2}$, we get the compatible rew. rules

$$
d h_{1} \rightarrow h_{1} d+b_{1} h_{1}, \quad h_{2} d \rightarrow d h_{2}-b_{2} h_{2}, \quad h_{1} \tilde{h}_{1} \rightarrow 1, \quad h_{2} \tilde{h}_{2} \rightarrow 1, \quad d i \rightarrow 1
$$

\triangleright problem: f does not rewrite into 0
$\rightsquigarrow \quad$ we need a compatible completion procedure
Adaptation of the Buchberger's proc.: the compatible monomial $h_{2} d i$ induces

$$
\begin{gathered}
\mathrm{SP}=d h_{2} i-b_{2} h_{2} i-h_{2}, \quad \mathrm{LM}(\mathrm{SP})=b_{2} h_{2} i \\
\triangleright \sigma\left(b_{2} h_{2} i\right)=\{\bullet \stackrel{*}{\rightarrow} \bullet\} \subseteq \sigma\left(d h_{2} i\right) \cap \sigma\left(h_{2}\right) \quad \rightsquigarrow \quad \text { we keep } f_{6}:=d h_{2} i-b_{2} h_{2} i-h_{2}
\end{gathered}
$$

Completion

Motivating example: consider as previously $F:=\left\{f_{1}, \ldots, f_{5}\right\}$ and f
\triangleright for the deglex order s.t. $b_{1}, h_{1}<d<b_{2}<h_{2}$, we get the compatible rew. rules

$$
d h_{1} \rightarrow h_{1} d+b_{1} h_{1}, \quad \mathrm{~h}_{2} \mathrm{~d} \rightarrow d h_{2}-b_{2} h_{2}, \quad h_{1} \tilde{h}_{1} \rightarrow 1, \quad h_{2} \tilde{h}_{2} \rightarrow 1, \quad \mathrm{di} \rightarrow 1
$$

\triangleright problem: f does not rewrite into 0
$\rightsquigarrow \quad$ we need a compatible completion procedure
Adaptation of the Buchberger's proc.: the compatible monomial $\mathrm{h}_{2} \mathrm{di}$ induces

$$
\begin{gathered}
\mathrm{SP}=d h_{2} i-b_{2} h_{2} i-h_{2}, \quad \mathrm{LM}(\mathrm{SP})=b_{2} h_{2} i \\
\triangleright \sigma\left(b_{2} h_{2} i\right)=\{\bullet \xrightarrow{*} \bullet\} \subseteq \sigma\left(d h_{2} i\right) \cap \sigma\left(h_{2}\right) \quad \rightsquigarrow \quad \text { we keep } f_{6}:=d h_{2} i-b_{2} h_{2} i-h_{2}
\end{gathered}
$$

Completion

Motivating example: consider as previously $F:=\left\{f_{1}, \ldots, f_{5}\right\}$ and f
\triangleright for the deglex order s.t. $b_{1}, h_{1}<d<b_{2}<h_{2}$, we get the compatible rew. rules

$$
d h_{1} \rightarrow h_{1} d+b_{1} h_{1}, \quad h_{2} d \rightarrow d h_{2}-b_{2} h_{2}, \quad h_{1} \tilde{h}_{1} \rightarrow 1, \quad h_{2} \tilde{h}_{2} \rightarrow 1, \quad d i \rightarrow 1
$$

\triangleright problem: f does not rewrite into 0
$\rightsquigarrow \quad$ we need a compatible completion procedure
Adaptation of the Buchberger's proc.: the compatible monomial $h_{2} d i$ induces

$$
\begin{gathered}
\mathrm{SP}=d h_{2} i-b_{2} h_{2} i-h_{2}, \quad \mathrm{LM}(\mathrm{SP})=\mathrm{b}_{2} \mathbf{h}_{2} \mathrm{i} \\
\triangleright \sigma\left(\mathrm{~b}_{2} \mathrm{~h}_{2} \mathrm{i}\right)=\{\bullet \stackrel{*}{\rightarrow} \bullet\} \subseteq \sigma\left(d h_{2} i\right) \cap \sigma\left(h_{2}\right) \quad \rightsquigarrow \quad \text { we keep } f_{6}:=d h_{2} i-b_{2} h_{2} i-h_{2}
\end{gathered}
$$

Completion

Motivating example: consider as previously $F:=\left\{f_{1}, \ldots, f_{5}\right\}$ and f
\triangleright for the deglex order s.t. $b_{1}, h_{1}<d<b_{2}<h_{2}$, we get the compatible rew. rules

$$
d h_{1} \rightarrow h_{1} d+b_{1} h_{1}, \quad h_{2} d \rightarrow d h_{2}-b_{2} h_{2}, \quad h_{1} \tilde{h}_{1} \rightarrow 1, \quad h_{2} \tilde{h}_{2} \rightarrow 1, \quad d i \rightarrow 1
$$

\triangleright problem: f does not rewrite into 0
$\rightsquigarrow \quad$ we need a compatible completion procedure
Adaptation of the Buchberger's proc.: the compatible monomial $h_{2} d i$ induces

$$
\begin{gathered}
\mathrm{SP}=d h_{2} i-b_{2} h_{2} i-h_{2}, \quad \mathrm{LM}(\mathrm{SP})=b_{2} h_{2} i \\
\triangleright \sigma\left(b_{2} h_{2} i\right)=\{\bullet \xrightarrow{*} \bullet\} \subseteq \sigma\left(\mathrm{dh}_{2} \mathrm{i}\right) \cap \sigma\left(\mathrm{h}_{2}\right) \quad \rightsquigarrow \quad \text { we keep } f_{6}:=d h_{2} i-b_{2} h_{2} i-h_{2}
\end{gathered}
$$

Completion

Motivating example: consider as previously $F:=\left\{f_{1}, \ldots, f_{5}\right\}$ and f
\triangleright for the deglex order s.t. $b_{1}, h_{1}<d<b_{2}<h_{2}$, we get the compatible rew. rules

$$
d h_{1} \rightarrow h_{1} d+b_{1} h_{1}, \quad h_{2} d \rightarrow d h_{2}-b_{2} h_{2}, \quad h_{1} \tilde{h}_{1} \rightarrow 1, \quad h_{2} \tilde{h}_{2} \rightarrow 1, \quad d i \rightarrow 1
$$

\triangleright problem: f does not rewrite into 0
$\rightsquigarrow \quad$ we need a compatible completion procedure
Adaptation of the Buchberger's proc.: the compatible monomial $h_{2} d i$ induces

$$
\begin{gathered}
\mathrm{SP}=d h_{2} i-b_{2} h_{2} i-h_{2}, \quad \mathrm{LM}(\mathrm{SP})=b_{2} h_{2} i \\
\triangleright \sigma\left(b_{2} h_{2} i\right)=\{\bullet \stackrel{*}{\rightarrow} \bullet\} \subseteq \sigma\left(d h_{2} i\right) \cap \sigma\left(h_{2}\right) \quad \rightsquigarrow \quad \text { we keep } \mathrm{f}_{6}:=\mathrm{dh}_{2} \mathrm{i}-\mathbf{b}_{2} \mathrm{~h}_{2} \mathrm{i}-\mathbf{h}_{2}
\end{gathered}
$$

Many proofs at once

Using completion: letting $G:=F \cup\left\{f_{6}\right\}$, we have $f \xrightarrow{*} G 0$
From the compatibility theorem: for all representations φ of Q

$$
\forall g \in F: \quad \varphi(g)=0 \quad \Rightarrow \quad \varphi(f)=0
$$

Consequences: let us consider the linear O.D.E.

$$
\begin{equation*}
y^{\prime \prime}(x)+A_{1}(x) y^{\prime}(x)+A_{0}(x) y(x)=r(x) \tag{4}
\end{equation*}
$$

where
$\triangleright A_{0}, A_{1}$ are functions of class C^{k}
$\triangleright r$ is a function of class C^{k}
If (4) may be factored into 1 st order O.D.E.'s with homogeneous invertible sol. H_{i},

$$
y(x)=H_{2}(x) \int_{x_{2}}^{x} H_{2}(t)^{-1} H_{1}(t) \int_{x_{1}}^{t} H_{1}(u)^{-1} r(u) d u d t
$$

is a function of class C^{k+2} solution of (4)

Many proofs at once

Using completion: letting $G:=F \cup\left\{f_{6}\right\}$, we have $f \xrightarrow{*} G 0$
From the compatibility theorem: for all representations φ of Q

$$
\forall g \in F: \quad \varphi(g)=0 \quad \Rightarrow \quad \varphi(f)=0
$$

Consequences: let us consider the linear O.D.E.

$$
\begin{equation*}
y^{\prime \prime}(x)+A_{1}(x) y^{\prime}(x)+A_{0}(x) y(x)=r(x) \tag{4}
\end{equation*}
$$

where
$\triangleright A_{0}, A_{1}$ are functions of class C^{k}
$\triangleright r$ is a function of class C^{k}
If (4) may be factored into 1 st order O.D.E.'s with homogeneous invertible sol. H_{i},

$$
y(x)=H_{2}(x) \int_{x_{2}}^{x} H_{2}(t)^{-1} H_{1}(t) \int_{x_{1}}^{t} H_{1}(u)^{-1} r(u) d u d t
$$

is a function of class C^{k+2} solution of (4)

Many proofs at once

Using completion: letting $G:=F \cup\left\{f_{6}\right\}$, we have $f \xrightarrow{*} G 0$
From the compatibility theorem: for all representations φ of Q

$$
\forall g \in F: \quad \varphi(g)=0 \quad \Rightarrow \quad \varphi(f)=0
$$

Consequences: let us consider the linear O.D.E.

$$
\begin{equation*}
y^{\prime \prime}(x)+A_{1}(x) y^{\prime}(x)+A_{0}(x) y(x)=r(x) \tag{4}
\end{equation*}
$$

where
$\triangleright A_{0}, A_{1}$ are analytic functions
$\triangleright r$ is an analytic function
If (4) may be factored into 1 st order O.D.E.'s with homogeneous invertible sol. H_{i},

$$
y(x)=H_{2}(x) \int_{x_{2}}^{x} H_{2}(t)^{-1} H_{1}(t) \int_{x_{1}}^{t} H_{1}(u)^{-1} r(u) d u d t
$$

is an analytic function solution of (4)

Many proofs at once

Using completion: letting $G:=F \cup\left\{f_{6}\right\}$, we have $f \xrightarrow{*} G 0$
From the compatibility theorem: for all representations φ of Q

$$
\forall g \in F: \quad \varphi(g)=0 \quad \Rightarrow \quad \varphi(f)=0
$$

Consequences: let us consider the linear O.D.E.

$$
\begin{equation*}
y^{\prime \prime}(x)+A_{1}(x) y^{\prime}(x)+A_{0}(x) y(x)=r(x) \tag{4}
\end{equation*}
$$

where
$\triangleright A_{0}, A_{1}$ are $n \times n$ matrices of functions of class C^{k}
$\triangleright r$ is a vector of n functions of class C^{k}
If (4) may be factored into 1 st order O.D.E.'s with homogeneous invertible sol. H_{i},

$$
y(x)=H_{2}(x) \int_{x_{2}}^{x} H_{2}(t)^{-1} H_{1}(t) \int_{x_{1}}^{t} H_{1}(u)^{-1} r(u) d u d t
$$

is a vector of n functions of class C^{k+2} solution of (4)

Many proofs at once

Using completion: letting $G:=F \cup\left\{f_{6}\right\}$, we have $f \xrightarrow{*} G 0$
From the compatibility theorem: for all representations φ of Q

$$
\forall g \in F: \quad \varphi(g)=0 \quad \Rightarrow \quad \varphi(f)=0
$$

Consequences: let us consider the linear O.D.E.

$$
\begin{equation*}
y^{\prime \prime}(x)+A_{1}(x) y^{\prime}(x)+A_{0}(x) y(x)=r(x) \tag{4}
\end{equation*}
$$

where
$\triangleright A_{0}, A_{1}$ are \cdots
$\triangleright r$ is a \cdots
If (4) may be factored into 1 st order O.D.E.'s with homogeneous invertible sol. H_{i},

$$
y(x)=H_{2}(x) \int_{x_{2}}^{x} H_{2}(t)^{-1} H_{1}(t) \int_{x_{1}}^{t} H_{1}(u)^{-1} r(u) d u d t
$$

is a \cdots solution of (4)

Summary

Our contributions

\triangleright we develop an approach based on Q-consequences to formally prove identities
\triangleright we provided a method for computing Q-consequences using rewriting

Implementation:

\triangleright Mathematica package OperatorGB (by Clemens Hofstadler)
\triangleright link: http://gregensburger.com/softw/OperatorGB/

THANK YOU FOR YOUR ATTENTION!

Summary

Our contributions

\triangleright we develop an approach based on Q-consequences to formally prove identities
\triangleright we provided a method for computing Q-consequences using rewriting

Implementation:

\triangleright Mathematica package OperatorGB (by Clemens Hofstadler)
\triangleright link: http://gregensburger.com/softw/OperatorGB/

THANK YOU FOR YOUR ATTENTION!

