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Proving operator identities

Objective: formally prove operator identities

. operators are expressible in terms of basic operators

. "forgetting" the analytic meaning by replacing basic operators by symbols

Prove new identities  establish equalities in suitable algebraic structures, e.g.,

. linear P.D.E.’s with constant/polynomial coeff.  polynomial/Weyl algebras

. integro-diff. systems with smooth unknown functions  tensor algebras

. other systems with mixed operations  Ore algebras/extensions, tensor rings

Prove algebraic equalities  use rewriting theory

. e.g., (adaptations of) Gröbner/Janet bases, tensor reduction systems, . . .

. simplify a syntactic expression into an equivalent one, e.g.,

∂ ◦
∫

= Id : A ◦ ∂ ◦
∫
◦ B A ◦ B
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Additional task

Take compatibility conditions into account Ck

. multiplication is not defined everywhere, e.g., matrices

. composition depends on domains and codomains

e.g ., ∂ : Ck+1(I)→ Ck(I),
∫

: Ck(I)→ Ck+1(I)

Existing method: based on quiver representation (Hossein Poor, R., R., arXiv:1910.06165)

. requires to work with "uniformly compatible" polynomials

Our contributions

Theoretical part: extend the quiver approach to prove more identities

Ô based on Q-consequences

Algorithmic part: compute Q-consequences using rewriting

Ô restrictions on the computations with G.B.
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Proof of operator identities

Given: basic operators satisfying identities, e.g.,

∂(f ) := f ′,
∫

(f ) :=
∫ x

x0

f (t)dt, Eval(f ) := f (x0)

are s.t. ∫
◦ ∂ = Id− Eval, ∂ ◦

∫
= Id

i.e., ∀f :
∫ x

x0
f ′(t)dt = f (x)− f (x0),

(∫ x
x0

f (t)dt
)′

= f (x)

Objective: prove new identities using symbolic methods, e.g.,

Eval ◦
∫

= 0,

i.e., ∀f :
∫ x0

x0
f (t)dt = 0, follows from∫

− Eval ◦
∫

=
∫
◦ ∂ ◦

∫
=

∫
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Formal computations with noncommutative polynomials

Example: Ck

∂,
∫
, Eval and

∫
◦ ∂ − Id + Eval = 0, ∂ ◦

∫
− Id = 0

Polynomial translation: Ck

K〈d , i , e〉 3 id − 1 + e, di − 1

New identity: Ck

ei = (id − 1 + e)i − i(di − 1)

Additionally: check compatiblity of cofactor decomposition with domains and codomains

∂ : Ck+1(I)→ Ck(I),
∫

: Ck(I)→ Ck+1(I), Eval : Ck+1(I)→ Ck+1(I)
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Quivers represented by operators

• •

e
d

i

•

e
d

i

Ck+1(I) Ck(I)

Eval
∂

∫

Def.: consider a labelled quiver Q (one letter may label multiple edges)

with a representation

. f ∈ K〈X〉 is a Q-consequence of F ⊆ K〈X〉 if it admits a compatible decomposition

. a realization of f ∈ K〈X〉 is an image of f by the representation

Ex. of a Q-csq.: ei = (id − 1 + e)i − i(di − 1) = idi − i + ei − idi + i

each monomial labels a path • ∗→ •

Theorem

If all elements of realizations of F are zero and if f is a Q-consequence of F , then all realizations
of f are zero
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Illustrating example

Consider the inhomogeneous linear O.D.E.

y ′′(x) + A1(x)y ′(x) + A0(x)y(x) = r(x) (1)

Assumption: (1) can be factored into the 1st order equations

y ′(x)− B2(x)y(x) = z(x) and z ′(x)− B1(x)z(x) = r(x)

General solution: given by

y(x) = H2(x)
∫ x

x2

H2(t)−1H1(t)
∫ t

x1

H1(u)−1r(u) du dt (2)

where Hi (x) is s.t. H′i (x)− Bi (x)Hi (x) = 0 and Hi (x)−1 exists

Illustration of the theorem: formally prove that (2) is a solution of (1)
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Illustrating example

Assumptions: prove that

y(x) = H2(x)
∫ x

x2

H2(t)−1H1(t)
∫ t

x1

H1(u)−1r(u) du dt

is solution of (
(∂ − B1) ◦ (∂ − B2)

)
(y(x)) = r(x)

where Hi is s.t. H′i (x)− Bi (x)Hi (x) = 0 and Hi (x)−1 exists

Algebraic part: X := {h1, h2, b1, b2, h̃1, h̃2, i , d}, F := {f1, . . . , f5} ⊂ K〈X〉, where

f1 := dh1 − h1d − b1h1, f2 := dh2 − h2d − b2h2,

f3 := h1h̃1 − 1, f4 := h2h̃2 − 1, f5 := di − 1

Objective: prove that f is a Q-consequence of F , where

f := (d − b1)(d − b2)h2i h̃2h1i h̃1 − 1
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First method for proving Q-consequences

Represented quiver: we need 2nd order derivative/integration and regularity assumptions

• • •

d d

i i

b1b2

h2 h1

h̃1h2 h̃2

h1

Fact: F := {f1, . . . , f5} ⇒ f ∗→F 0 using an orientation of fi ’s

dh1 h1d + b1h1, dh2 h2d + b2h2,

h1h̃1 1, h2h̃2 1, di 1

and keeping track of cofactors, we get

f = f1i h̃1 + (d − b1)f2i h̃2h1i h̃1 + f3 + (d − b1)f4h1i h̃1

+(d − b1)h2f5h̃2h1i h̃1 + h1f5h̃1
(3)

By a case analysis: (3) proves that f is a Q-consequence of F
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Second method for proving Q-consequences

Restrict to rew. steps s.t.

We only use "valid" computations

Compatible rewriting rules

Signatures: σ(dh2) = {• ∗→ •, • ∗→ •}, σ(h2d) = {• ∗→ •}, σ(b2h2) = {• ∗→ •}

• • •

d d

b1b2

i i

h1 h1h2

h2 h̃1h̃2

Definition: a rew. rule m→ g is Q-compatible if σ(m) ⊆ σ(g), e.g.,

. dh2 → h2d + b2h2 is not compatible (1st method involved invalid computations)

. h2d → dh2 − b2h2 is compatible
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Theorem

Let Q be a quiver labelled by X , let F ⊂ K〈X〉 and let f ∈ K〈X〉. Assume that each rew. rule is
Q-compatible and f ∗→F 0. Then,

f is compatible with Q ⇔ f is a Q-consequence

Summary of the 2nd method for proving Q-consequences

Using the Theorem:

. representation(s) of the quiver  map any polynomial to the operator(s) it represents

. elements of F  polynomial expressions of known operator identities

. f  polynomial expression of the identity we wish to prove

. f ∗→F 0 with compatible rew. rules only  the identity is proven
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Completion

Motivating example: consider as previously F := {f1, . . . , f5} and f

. for the deglex order s.t. b1, h1 < d < b2 < h2, we get the compatible rew. rules

dh1 h1d + b1h1, h2d dh2 − b2h2, h1h̃1 1, h2h̃2 1, di 1

. problem: f does not rewrite into 0

 we need a compatible completion procedure

Adaptation of the Buchberger’s proc.: the compatible monomial h2di induces

SP = dh2i − b2h2i − h2, LM(SP) = b2h2i

. σ(b2h2i) = {• ∗→ •} ⊆ σ(dh2i) ∩ σ(h2)  we keep f6 := dh2i − b2h2i − h2

• • •

d d

b1b2

i i

h1 h1h2

h2 h̃1h̃2
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Many proofs at once

Using completion: letting G := F ∪ {f6}, we have f ∗→G 0

From the compatibility theorem: for all representations ϕ of Q

∀g ∈ F : ϕ(g) = 0 ⇒ ϕ(f ) = 0

Consequences: let us consider the linear O.D.E.

y ′′(x) + A1(x)y ′(x) + A0(x)y(x) = r(x) (4)

where
. A0, A1 are functions of class Ck Ck

. r is a function of class Ck Ck

If (4) may be factored into 1st order O.D.E.’s with homogeneous invertible sol. Hi ,

y(x) = H2(x)
∫ x

x2

H2(t)−1H1(t)
∫ t

x1

H1(u)−1r(u) du dt

is a function of class Ck+2 solution of (4) Ck
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Summary

Our contributions Ck

. we develop an approach based on Q-consequences to formally prove identities

. we provided a method for computing Q-consequences using rewriting

Implementation: Ck

. Mathematica package OperatorGB (by Clemens Hofstadler)

. link: http://gregensburger.com/softw/OperatorGB/

THANK YOU FOR YOUR ATTENTION!
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